K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

- Để M là phân số tối giản \(\Rightarrow\)\(n-1\)không chia hết cho \(n-2\)

- Ta có: \(n-1=\left(n-2\right)+1\)

- Để \(n-1\)không chia hết cho \(n-2\)\(\Leftrightarrow\)\(\left(n-2\right)+1\)không chia hết cho \(n-2\)mà \(n-2⋮n-2\)

 \(\Rightarrow\)\(1\)không chia hết cho \(n-2\)\(\Rightarrow\)\(n-2\notinƯ\left(1\right)\)\(\Leftrightarrow\)\(n-2\notin\left\{\pm1\right\}\)

 +  \(n-2\ne1\)\(\Leftrightarrow\)\(n\ne1+2\)\(\Leftrightarrow\)\(n\ne3\)

 +  \(n-2\ne-1\)\(\Leftrightarrow\)\(n\ne-1+2\)\(\Leftrightarrow\)\(n\ne1\)

Vậy để M là phân số tối giản thì \(n\ne3\)và \(n\ne1\)

28 tháng 2 2018

\(M=\frac{3}{n-2}\)

a, \(ĐK:x-2\ne0\Leftrightarrow n\ne2\)

b, \(M=\frac{3}{n-2}\) ; n = 0

\(\Rightarrow M=\frac{3}{0-2}\)

\(\Rightarrow M=\frac{3}{-2}\)

với -2 làm tương tự với 0

a) tập hợp rỗng

b)n={-1;2}

26 tháng 1 2017

\(\frac{m}{p}=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{p-1}\)

\(\frac{m}{p}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+....+\left(1+\frac{1}{\left(p-1\right):2}\right)+\left(1+\frac{1}{\left(p-2\right):2}\right)\)

\(\frac{m}{n}=p\left(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+........+\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\right)\)

MC:1.2.3....(p-1)

Gọi các thừa số phụ lần lượt là \(k_1;k_2;k_3;.....;k_{p-1}\)

Khi đó: \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+....+k_{\left(p-1\right)}\right)}{1.2.3....\left(p-1\right)}\)

Do p là nguyên tố lớn hơn 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p

\(\Rightarrow\)m chia hết cho p (đpcm)

đây là toán 6 ó, thấy nó hơi khó nên cho các anh chj bật cao hơn giải

27 tháng 1 2016

Em mới học lớp 5 thui

28 tháng 5 2018

Không bt lm . Ahihi!

18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)