Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
a/rút gọn n ta còn 3+1/5+10=4/15(tối giản suy ra đpcm)
b/tương tự như câu a nhưng thay số
c/rút gọn n còn 3+2/4+3^2+1=5/14( tối giản suy ra đpcm)
d/rút gọn n ta còn 2+1/2^2-1=3/3=1/1(tối giản suy ra đpcm)
Tèn ten xong nhưng ko bik đúng hay sai nha!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Đặt \(A=\frac{3n+1}{5n+2}\). Gọi ƯCLN(3n+1 , 5n+2) = d \(\left(d\ge1\right)\)
Khi đó : \(3n+1⋮d\) và \(5n+2⋮d\)
\(\Rightarrow5\left(3n+1\right)⋮d\) và \(3\left(5n+2\right)⋮d\)
\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\Rightarrow d=1\)
Suy ra ƯCLN(3n+1 , 5n+2) = 1 , vậy A là phân số tối giản.
b) Đặt \(B=\frac{n^3+2n}{n^4+3n^2+1}\) . Gọi ƯCLN(n3+2n , n4+3n2+1) = d \(\left(d\ge1\right)\)
Khi đó : \(B=\frac{n\left(n^2+2\right)}{n^2\left(n+2\right)+n^2+1}\)
Ta có : \(n\left(n^2+2\right)⋮d\) và \(n^2\left(n+2\right)+n^2+1⋮d\)
Từ \(n\left(n^2+2\right)⋮d\) \(\Rightarrow\left[\begin{array}{nghiempt}n⋮d\\n^2+2⋮d\end{array}\right.\)
TH1. Nếu \(n⋮d\) thì ta viết dưới mẫu thức B dưới dạng :
\(n\left(n^3+3n\right)+1⋮d\) . mà n(n3+3n)\(⋮\)d => \(1⋮d\) \(\Rightarrow d\le1\)
Mà \(d\ge1\Rightarrow d=1\). Lập luận tương tự câu a) , suy ra đpcm
TH2. Nếu \(n^2+2⋮d\) thì ta viết mẫu thức B dưới dạng :
\(\left(n^4+2n^2\right)+\left(n^2+2\right)-1=\left(n^2+2\right)\left(n^2+1\right)-1⋮d\)
mà n2+2 \(⋮\)d nên \(1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1
Lập luận tương tự...
a)Gọi UCLN(3n+1;5n+2) là d
Ta có:
[3(5n+2)]-[5(3n+1)] chia hết d
=>[15n+6]-[15n+5] chia hết d
=>1 chia hết d.Suy ra 3n+1 và 3n+5 là số nguyên tố cùng nhau
=>Phân số tối giản
b)Gọi d là UCLN(n3+2n;n4+3n2+1)
Ta có:
n3+2n chia hết d =>n(n3+2n) chia hết d
=>n4+2n2 chia hết d (1)
n4+3n2-(n4+2n2)=n2+1 chia hết d
=>(n2+1)2=n4+2n2+1 chia hết d (2)
Từ (1) và (2) => (n4+3n2+1)-(n4-2n2) chia hết d
=>1 chia hết d
=>d=1.Suy ra n3+2n và n4+3n2+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
1/
a3+b3+c3=2abc
vì a+b+c=0
=> a+b=-c
GTNN của c là -1. với c=1=> a+b=-1=> a=0và b=-1 hoặc a=-1 và b=0
khi đó. A=2.(-1).1.0=0
=> GTNN của A là......
Vừa làm vừa nháp nên bạn chú ý nhé !
ít nhất 1 trong 3 số bằng 1 thì ta nghĩ đến \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
\(=\left(ab-a-b+1\right)\left(c-1\right)\)
\(=abc-ab-ac-bc+a+b+c-1\)
\(=a+b+c-ab-bc-ca\) ( 1 )
Biến đổi giả thiết:\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}=ab+bc+ca\)
Khi đó ( 1 ) = 0 => đpcm
a
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\) là SNT thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)
Mà n là số tự nhiên nên \(n^2+6n+10>n^2-6n+10\)
\(\Rightarrow n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
Thay n=3 vào cái ban đầu ta được \(\left(n^2-8\right)^2+36=37\) ( là số nguyên tố )
b/\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow a+b+c=\frac{ab+bc+ca}{abc}\)
\(\Rightarrow a+b+c=ab+bc+ca\)
\(\Rightarrow a+b+c-ab-bc-ca=0\)
\(\Rightarrow abc+a+b+c-ab-bc-ca-1=0\)
\(\Rightarrow\left(a-ab\right)+\left(b-1\right)+\left(c-bc\right)+\left(abc-ac\right)=0\)
\(\Rightarrow-a\left(b-1\right)+\left(b-1\right)-c\left(b-1\right)+ac\left(b-1\right)=0\)
\(\Rightarrow\left(b-1\right)\left(-a+1-c+ac\right)=0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
<=> a-1 =0 hoặc b-1 =0 hoặc c-1=0
<=> a=1 hoặc b=1 hoặc c=1
Vậy trong 3 số a,b,c có ít nhất 1 số bằng 1
P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )
Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3
Xét 4 số a,b,c,d khi chia cho 4
- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4
- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3
có hiệu chia hết cho 2. do đó P chia hết cho 4
#)Giải :
Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3
Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ
Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2
=> Tích trên chia hết cho 3 và 4
Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12
#~Will~be~Pens~#
đây là toán 6 ó, thấy nó hơi khó nên cho các anh chj bật cao hơn giải
Em mới học lớp 5 thui