Cho a > b . So sánh :
1) a + b và 2b
2) a + 1 + 2 + 3 +....+ 9 + 10 và b + 54
Toán Đại 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 27/82 < 26/75 ( 2025/6250 < 2132\6250)
b) -49/78 > 64/ -95 ( - 3136/7410 > -4992/7410)
c) ta có: \(A=\frac{54.107-53}{53.107}=\frac{53.107+(107-53)}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{134.269+\left(269-133\right)}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)
\(\Rightarrow A< B\)
d) ta có: \(A=\frac{3^{10}+1}{3^9+1}=\frac{3.\left(3^9+1\right)-2}{3^9+1}=\frac{3.\left(3^9+1\right)}{3^9+1}-\frac{2}{3^9+1}=3-\frac{2}{3^9+1}\)
\(B=\frac{3^9+1}{3^8+1}=\frac{3.\left(3^8+1\right)-2}{3^8+1}=\frac{3.\left(3^8+1\right)}{3^8+1}-\frac{2}{3^8+1}=3-\frac{2}{3^8+1}\)
mà \(\frac{2}{3^9+1}< \frac{2}{3^8+1}\Rightarrow3-\frac{2}{3^9+1}< 3-\frac{2}{3^8+1}\)
=> A < B
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
B= 20^9+1/20^10+1
B= 20^9 +1 +19/ 20^10+1+19
B= 20^9 +20 /20^10+20
B= 20(20^8 +1) / 20(20^9+1)
B= 20^8+1 / 20^9+1 =A
=> A = B
Vậy...
b) C= 54.107- 53/ 53.107+ 54
C= (53+1)107-53 / 53.107 +54
C= 53.107+ 1.107 - 53/ 53.107 +54
C= 53.107 + 107 -53/ 53.107 +54
C= 53.107 + 54 / 53.107 + 54
C= 1
Vậy...
A = \(\dfrac{n^9+1}{n^{10}+1}\)
\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n - \(\dfrac{n-1}{n^9+1}\)
B = \(\dfrac{n^8+1}{n^9+1}\)
\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) = n - \(\dfrac{n-1}{n^8+1}\)
Vì n > 1 ⇒ n - 1> 0
\(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)
⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)
⇒ A < B
1)/x-3/=9-2x
/x-3/=\(\hept{\begin{cases}x-3khix>3\\3-xkhix< 3\end{cases}}\)
TH1:x>3 phương trình là
x-3=9-2x
<=> x+2x=9+3
<=> 3x =12
<=> x =4 (thỏa mãn)
TH2:x<3 phương trình là
3-x=9-2x
<=>-x+2x=9-3
<=>x =6(không thỏa mãn-loại)
Vậy tập nghiệm của phương trình là S={4}
1) Ta có : a>b (gt)
=> a+b > 2b
2) Ta có : a+1+2+3+...+10 = a+55 (1)
Lại có : b+54 (2)
và theo gt là a > b (3)
Từ 1 ; 2 và 3 => a+55 > b+54