K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Giải:

22 tháng 3 2020

\(\text{GIẢI :}\)

A B C H D O I x y

a) Xét \(\diamond\text{ACDO}\)\(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)

\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.

\(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.

b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)

Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)

hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)

Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).

Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :

\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)

\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)

\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\)\(\widehat{BAH}\) đối đỉnh)

\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)

\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).

17 tháng 3 2020

\(\text{GIẢI :}\)

A B C M E D

Chứng minh :

a) Xét \(\diamond\text{AEMD}\), có \(\hept{\begin{cases}\text{​AE // DM ​}\\\text{EM // AD}\end{cases}}\)

\(\Rightarrow \text{ }\diamond\text{AEMD}\) là hình bình hành.

b) Để hình bình hành AEMD là hình thoi \(\Rightarrow\) AM là đường phân giác của góc A.

c) Để hình bình hành AEMD là hình vuông \(\Rightarrow\text{ }\hept{\begin{cases}\bigtriangleup\text{ABC vuông tại A}\\\text{AM là đường phân giác góc A}\end{cases}}\).

6 tháng 11 2023

loading... 

a) Tứ giác ADME có:

∠AEM = ∠ADM = ∠EAD = 90⁰ (gt)

⇒ ADME là hình chữ nhật

b) Do HI = HA (gt)

⇒ H là trung điểm của AI

Do HK = HB (gt)

⇒ H là trung điểm của BK

Tứ giác ABIK có:

H là trung điểm của AI (cmt)

H là trung điểm của BK (cmt)

⇒ ABIK là hình bình hành

⇒ IK // AB

Mà AB ⊥ AC (∆ABC vuông tại A)

⇒ IK ⊥ AC

⇒ IK là đường cao của ∆ACI

Lại có:

AH ⊥ BC (do AH là đường cao của ∆ABC)

⇒ CH ⊥ AI

⇒ CH là đường cao thứ hai của ∆ACI

∆ACI có:

IK là đường cao (cmt)

CH là đường cao (cmt)

⇒ AK là đường cao thứ ba của ∆ACI

⇒ AK ⊥ IC

21 tháng 3 2020

\(\text{GIẢI :}\)

A B C M D E

a) Xét \(\diamond\text{ADME}\)\(DM\text{ }//\text{ }AB\), \(EM\text{ }//\text{ }AC\) \(\Rightarrow\text{ }\diamond\text{ADME}\) là hình bình hành.

b) Để hình bình hành ADME là hình thoi \(\Leftrightarrow\text{ }AM\) là tia phân giác của góc A.

Vậy M là giao điểm của tia phân giác góc A và cạnh BC thì ADME là hình thoi.

c) Để hình bình hành ADME là hình chữ nhật \(\Leftrightarrow\angle\text{A}=90^0\text{ }\Leftrightarrow\text{ }\bigtriangleup\text{ABC}\) vuông tại A.