cho các pt bậc 2: ax2+bx+c=0 và px2+qx+r=0 có ít nhất 1 n chung
cmr ta có hệ thức (pc-ar)2=(pq-aq)(cq-rb)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hai phương trình fai bieets là có mấy nghiêm chung chứ thế này lam sao biết để thay vào cho đúng!!!!!!!!!!!!!!!!!!
1) viết các đơn thức có cả 2 biến x,y có hệ số là 2016 và có bậc là 3
trả lời:
2016x2y
2016xy2
học tốt!!!
\(f\left(x\right)=ax^2+bx+c\)
Ta có: \(f\left(1\right)=a+b+c;f\left(-1\right)=a-b+c\)
Khi \(a+b+c=0\Rightarrow f\left(1\right)=0\Rightarrow x=1\) là nghiệm đa thức
Khi \(a-b+c=0\Rightarrow f\left(-1\right)=0\Rightarrow x=-1\) là nghiệm đa thức
Vậy đa thức có ít nhất 1 nghiệm.
cái hệ thức cuối phải sửa thành ( pc - ar )^2 = (pb - aq )(cq- rb ) . bạn gõ sai rồi :))
giả sử x0 là nghiệm chung của hai phương trình :
\(\Rightarrow\)ax02 + bx0 + c = 0 ( 1 )
px02 + qx0 + c = 0 ( 2 )
vì a,p khác 0 nên nhân ( 1 ) với p ; nhân ( 2 ) với a , ta có :
\(\hept{\begin{cases}pax_0^2+pbx_0+pc=0\\pax_0^2+qax_0+ar=0\end{cases}}\)\(\Rightarrow\left(aq-pb\right)x_0+\left(ar-pc\right)=0\)
Tương tự : \(\left(aq-pb\right)x_0^2+\left(cq-rb\right)=0\Rightarrow\left(aq-pb\right)^2x_0^2=\left(pc-ar\right)^2\)
và \(\left(aq-pb\right)^2x_0^2=\left(rb-cq\right)\left(aq-pb\right)\)
\(\Rightarrow\left(pc-ar\right)^2=\left(rb-cq\right)\left(aq-pb\right)\Rightarrow\left(pc-ar\right)^2=\left(pb-aq\right)\left(cq-rb\right)\)