Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hai phương trình fai bieets là có mấy nghiêm chung chứ thế này lam sao biết để thay vào cho đúng!!!!!!!!!!!!!!!!!!
Vì PTVN nên Δ<0
=>f(x)=ax^2+bx+c luôn cùng dấu với a
=>f(x)>0 với mọi x
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24
Ta có: \(\Delta1=\left(2b\right)^2-4ac=4b^2-4ac\)
\(\Delta2=\left(2c\right)^2-4ab=4c^2-4ab\)
\(\Delta3=\left(2a\right)^2-4bc=4a^2-4bc\)
\(\Rightarrow\Delta=\Delta1+\Delta2+\Delta3=4b^2-4ac+4c^2-4ab+4a^2-4bc\)
\(=2\left(2b^2-2ac+2c^2-2ab+2a^2-2bc\right)\)
\(=2\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\right)\)
\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
Vậy với mọi a,b,c thì ít nhất một trong các pt sau có nghiệm
ax^2 + 2bx + c = 0 (1)
bx^2 + 2cx + a = 0 (2)
cx^2 + 2ax + b = 0 (3)
Xét:
Δ1 = b² - ac
Δ2 = c² - ab
Δ3 = a² - bc
ta có 2(Δ1+ Δ2 + Δ3)
= 2(b² - ac) + (c² - ab) + (a² - bc)
= (a² - 2ab + b² ) + (b² - 2bc + c²) + (c² - 2ac + a²)
= (a - b)² + (b - c)² + (a - c)² ≥ 0
=> Δ1+ Δ2 + Δ3 ≥ 0
=> trong 3Δ: Δ1;Δ2; Δ3 phải có ít nhất 1Δ ≥ 0
Vậy ít nhất 1phương trình có nghiệm => đpcm
cái hệ thức cuối phải sửa thành ( pc - ar )^2 = (pb - aq )(cq- rb ) . bạn gõ sai rồi :))
giả sử x0 là nghiệm chung của hai phương trình :
\(\Rightarrow\)ax02 + bx0 + c = 0 ( 1 )
px02 + qx0 + c = 0 ( 2 )
vì a,p khác 0 nên nhân ( 1 ) với p ; nhân ( 2 ) với a , ta có :
\(\hept{\begin{cases}pax_0^2+pbx_0+pc=0\\pax_0^2+qax_0+ar=0\end{cases}}\)\(\Rightarrow\left(aq-pb\right)x_0+\left(ar-pc\right)=0\)
Tương tự : \(\left(aq-pb\right)x_0^2+\left(cq-rb\right)=0\Rightarrow\left(aq-pb\right)^2x_0^2=\left(pc-ar\right)^2\)
và \(\left(aq-pb\right)^2x_0^2=\left(rb-cq\right)\left(aq-pb\right)\)
\(\Rightarrow\left(pc-ar\right)^2=\left(rb-cq\right)\left(aq-pb\right)\Rightarrow\left(pc-ar\right)^2=\left(pb-aq\right)\left(cq-rb\right)\)