K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
21 tháng 4 2020

Gọi x0 là nghiệm chung của 2 phương trình

Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)

\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)

Mà \(a\ne b\Rightarrow x_0=c\)

Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2

Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)

Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)

Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:

x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0

21 tháng 3 2020

Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có

\(ax_1^2+bx_1+c=0\)

chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)

ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)

suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)

Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)

áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :

\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)

26 tháng 3 2019

Chọn đáp án B

Gọi x 0 là nghiệm thực chung của 2 phương trình

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ x 0 2 + a x 0  + 1 =  x 0 2 -  x 0  - a ⇔ (a + 1) x 0 = -(a + 1) ⇔  x 0  = -1

Thay  x 0  = -1 vào phương trình  x 0 2 + a  x 0  + 1 = 0 tìm được a = 2

17 tháng 5 2021

\(\left\{{}\begin{matrix}ax^2+by+c=0\\cx^2+by+a=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}ax^2+by=-c\\cx^2+by=-a\end{matrix}\right.\)

vì pt có 1 nghiệm duy nhất

nên\(\dfrac{a}{c}\ne\dfrac{b}{b}\)\(\dfrac{a}{c}\ne1\)\(a\ne c\)

 

 

 

17 tháng 5 2021

mình chỉ biết làm điều kiện thôi

 

16 tháng 3 2018

bt đc chết liền