2 sin15 x − cos10 x = 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn phải ns rõ là bài này có được dùng máy tính hay ko .
mình làm theo cách ko bấm máy nhé
Ta có : khi góc \(\alpha\)tăng từ 0 -> 90 độ thì : \(\hept{\begin{cases}\sin\alpha\\\tan\alpha\end{cases}}\)tăng ; \(\hept{\begin{cases}\cos\alpha\\\cot\alpha\end{cases}}\)tăng
a) \(\sin15^o=\cos75^o>\cos80^o\) ;\(\tan25^o=\cot65^o>\cot75^o\)
\(\cot75^o=\tan15^o=\frac{\sin15^o}{\cos15^o}>\sin15^o\)( vì \(0< \cos15^o< 1\) )
tóm lại : \(\cos80^o< \sin15^o< \cot75^o< \tan25^o\)
b) tương tự
\(A=cos10+cos170+cos40+cos140+cos70+cos110\)
\(A=cos10+cos\left(180-10\right)+cos40+cos\left(180-40\right)+cos70+cos\left(180-70\right)\)
\(A=cos10-cos10+cos40-cos40+cos70-cos70\)
\(A=0\)
\(B=sin5+sin355+sin10+sin350+...+sin175+sin185+sin360\)
\(B=sin5+sin\left(360-5\right)+sin10+sin\left(360-10\right)+...+sin175+sin\left(360-175\right)+sin360\)
\(B=sin5-sin5+sin10-sin10+...+sin175-sin175+sin360\)
\(B=sin360=0\)
\(C=cos^22+cos^288+cos^24+cos^284+...+cos^244+cos^246\)
\(C=cos^22+cos^2\left(90-2\right)+cos^24+cos^2\left(90-4\right)+...+cos^244+cos^2\left(90-44\right)\)
\(C=cos^22+sin^22+cos^24+sin^24+...+cos^244+sin^244\)
\(C=1+1+...+1\) (có \(\frac{44-2}{2}+1=22\) số 1)
\(\Rightarrow C=22\)
A=sin240+cos210+2sin40cos10-cos240-sin210-2sin10cos40+cos(90+50)
A=(sin240-cos240)+(cos210-sin210)+2(sin40cos10-cos40sin10)-sin50
A=(sin40-cos40)(sin40+cos40)-(sin10-cos10)(sin10+cos10)+1-sin50
A=\(\sqrt{2}\) sin(40-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(40-\(\frac{\pi}{4}\))-\(\sqrt{2}\)sin(10-\(\frac{\pi}{4}\))\(\sqrt{2}\) cos(10-\(\frac{\pi}{4}\))+1-sin50
A=-2sin5cos5+2sin35cos35+1-sin50
A= - sin10+sin70+1-sin50
A= 2cos40sin30-sin(90-40)+1
A=cos40-cos40+1 =1
\(\Leftrightarrow2\left(sin^{15}x-1\right)=cos^{10}x\)
Do \(sinx\le1\Rightarrow sin^{15}x\le1\Rightarrow VT\le0\)
Mà \(VP=cos^{10}x\ge0;\forall x\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin^{15}x-1=0\\cos^{10}x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx=1\\cosx=0\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)