Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: sin30=cos60, sin50=cos40
Mà cos30 < cos38 < cos40 < cos60 < cos80
Nên cos30 < cos38 < sin50 < sin30 < cos80
b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)
và: sin49=cos41 => cos30 < sin49 (2)
Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)
Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63
TA CÓ \(\sin30\)= \(\cos60\)
\(\sin50=\cos40\)
---->> \(\cos30< \cos38< \cos40< \cos60< \cos80\)
------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)
Cái kia làm tương tự nhoa
Bạn xin 1 cái k
a) cos14∘=sin76∘;cos87∘=sin3∘.cos14∘=sin76∘;cos87∘=sin3∘..
Vì sin3∘<sin47∘<sin76∘<sin78∘sin3∘<sin47∘<sin76∘<sin78∘ nên
cos78∘<cos76∘<cos47∘<cos3∘cos78∘<cos76∘<cos47∘<cos3∘.
b) cotg25∘=tg65∘;cotg38∘=tg52∘cotg25∘=tg65∘;cotg38∘=tg52∘.
Vì tg52∘<tg62∘<tg65∘<tg73∘tg52∘<tg62∘<tg65∘<tg73∘;
nên cotg38∘<tg62∘<cotg25∘<tg73∘cotg38∘<tg62∘<cotg25∘<tg73∘.
Nhận xét: Để so sánh các tỉ số lượng giác sin và côsin của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là sin của các góc). Tương tự như vậy, để so sánh các tỉ số lượng giác tang và côtang của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là tang của các góc).
a) cos14∘=sin76∘;cos87∘=sin3∘..
Vì sin3∘<sin47∘<sin76∘<sin78∘ nên
cos78∘<cos76∘<cos47∘<cos3∘.
b) cotg25∘=tg65∘;cotg38∘=tg52∘.
Vì tg52∘<tg62∘<tg65∘<tg73∘;
nên cotg38∘<tg62∘<cotg25∘<tg73∘.
Nhận xét: Để so sánh các tỉ số lượng giác sin và côsin của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là sin của các góc). Tương tự như vậy, để so sánh các tỉ số lượng giác tang và côtang của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là tang của các góc).
Đặt \(2000=a\)
\(A=a^9\\ B=\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\\ B=\left(a^2-16\right)\left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2.a^2=a^9\\ B=\left(a-8\right)\left(a-6\right)\left(a-4\right)\left(a-2\right)a\left(a+2\right)\left(a+4\right)\left(a+6\right)\left(a+8\right)\\ C=\left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a\\ C< \left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2=a^9\\ D=\left(a-20\right)\left(a-15\right)\left(a-10\right)\left(a-5\right)a\left(a+5\right)\left(a+10\right)\left(a+15\right)\left(a+20\right)\\ D=\left(a^2-400\right)\left(a^2-225\right)\left(a^2-100\right)\left(a^2-25\right)a\\ D< \left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a< a.a^2.a^2.a^2=9\)
Vậy \(D< C< B< A\)
Giải:
\(A=\sin10+\sin40-\cos50-\cos80\)
\(\Leftrightarrow A=\cos80+\cos50-\cos50-\cos80\)
\(\Leftrightarrow A=0\)
Vậy ...
\(B=\cos15+\cos25-\sin65-\sin75\)
\(\Leftrightarrow B=\sin75+\sin65-\sin65-\sin75\)
\(\Leftrightarrow B=0\)
Vậy ...
\(C=\dfrac{\tan27.\tan63}{\cot63.\cot27}\)
\(\Leftrightarrow C=\dfrac{\tan27.\tan63}{\tan27.\tan63}\)
\(\Leftrightarrow C=1\)
Vậy ...
\(D=\dfrac{\cot20.\cot45.\cot70}{\tan20.\tan45.\tan70}\)
\(\Leftrightarrow D=\dfrac{\cot20.\cot45.\cot70}{\cot70.\cot45.\cot20}\)
\(\Leftrightarrow D=1\)
Vậy ...
bạn phải ns rõ là bài này có được dùng máy tính hay ko .
mình làm theo cách ko bấm máy nhé
Ta có : khi góc \(\alpha\)tăng từ 0 -> 90 độ thì : \(\hept{\begin{cases}\sin\alpha\\\tan\alpha\end{cases}}\)tăng ; \(\hept{\begin{cases}\cos\alpha\\\cot\alpha\end{cases}}\)tăng
a) \(\sin15^o=\cos75^o>\cos80^o\) ;\(\tan25^o=\cot65^o>\cot75^o\)
\(\cot75^o=\tan15^o=\frac{\sin15^o}{\cos15^o}>\sin15^o\)( vì \(0< \cos15^o< 1\) )
tóm lại : \(\cos80^o< \sin15^o< \cot75^o< \tan25^o\)
b) tương tự