Tìm x:
6+12+8+...+6x=330
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
Có tất cả:(300-1):1+1=300(số)
Nếu ta nhóm 4 số hạng vào một nhóm thì ta được:300:4=75(cặp)
B=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(287+288-299-300)+(301+302)
B=(-4)+(-4)+(-4)+...+(-4)+(301+302)
B=75.(-4)+603
B=(-300)+603
B=303
Hình như bạn viết sai đề rồi phải là 300 chứ sao lại là 330 cái chỗ 299-330 đấy
a, |3x - 6| + 4x + 3 = 12
|3x - 6| = 12 - 3 - 4x
|3x - 6| = 9 - 4x
TH1: 3x - 6 = 9 - 4x ⇔ 3x + 4x = 9 + 6 ⇔ 7x = 15 ⇔ x = 15/7
TH2: 3x - 6 = 4x - 9 ⇔ 3x - 4x = -9 + 6 ⇔ -x = -3 ⇔ x = 3.
b, |6x - 12| + 3x - 1 = 43
|6x - 12| = 43 + 1 - 3x
|6x - 12| = 44 - 3x
TH1: 6x - 12 = 44 - 3x ⇔ 6x + 3x = 44 + 12 ⇔ 9x = 56 ⇔ x = 6.
TH2: 6x - 12 = 3x - 44 ⇔ 6x - 3x = -44 + 12 ⇔ 3x = -32 ⇔ x = -32/3.
c, |8 - 4x| + 7x - 5 = 16 - 2x
|8 - 4x| = (16 + 5) + (-2x - 7x)
|8 - 4x| = 21 - 9x
TH1: 8 - 4x = 21 - 9x ⇔ -4x + 9x = 21 - 8 ⇔ 5x = 13 ⇔ x = 13/5
TH2: 8 - 4x = 9x - 21 ⇔ -4x - 9x = -21 - 8 ⇔ -15x = -29 ⇔ x = 29/15
Giải:
a) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(x=\dfrac{-13}{12}\)
b) \(2.\left(x-\dfrac{1}{3}\right)=\left(\dfrac{1}{3}\right)^2+\dfrac{5}{9}\)
\(2.\left(x-\dfrac{1}{3}\right)=\dfrac{1}{9}+\dfrac{5}{9}\)
\(2.\left(x-\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(x-\dfrac{1}{3}=\dfrac{2}{3}:2\)
\(x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{1}{3}\)
\(x=\dfrac{2}{3}\)
c) \(\left|2x-\dfrac{3}{4}\right|-\dfrac{3}{8}=\dfrac{1}{8}\)
\(\left|2x-\dfrac{3}{4}\right|=\dfrac{1}{8}+\dfrac{3}{8}\)
\(\left|2x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{1}{2}\\2x-\dfrac{3}{4}=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{8}\\x=\dfrac{1}{8}\end{matrix}\right.\)
d) \(\dfrac{2}{3}x+\dfrac{1}{6}x=3\dfrac{5}{8}\)
\(x.\left(\dfrac{2}{3}+\dfrac{1}{6}\right)=\dfrac{29}{8}\)
\(x.\dfrac{5}{6}=\dfrac{29}{8}\)
\(x=\dfrac{29}{8}:\dfrac{5}{6}\)
\(x=\dfrac{87}{20}\)
Tìm các cặp số x nguyên thỏa mãn: (12x - 1)(6x - 1)(4x - 1)(3x - 1) = 330
<=> (12x - 1)2(6x - 1)3(4x - 1)4(3x - 1) = 330.24
<=> (12x - 1)(12x - 2)(12x - 3)(12x - 4) = 7920
<=> [ (12x - 1)(12x - 4)] [ (12x - 3)(12x - 2) ] - 7920 = 0
<=> (144x² - 60x + 4)(144x² - 60x + 6) - 7920 = 0
Đặt (144x² - 60x + 4) = t
=> t(t + 2) - 7920 = 0
=> t² + 2t - 7920 = 0
∆' = 1² + 7920 = 7921 => √∆' = 89
=> t1 = - 90 hay t2 = 88
Khi t = - 90
=> (144x² - 60x + 4) = -90
=> 144x² - 60x + 94 = 0
=> 72x² - 30x + 47 = 0
∆' = (-15)² - 47.72 = - 3159 => (loại)
Khi t = 88
=> (144x² - 60x + 4) = 88
=> 144x² - 60x - 84 = 0
=> 36x² - 15x + 21 = 0
∆ = (-15)² + 4.36.21 = 3249 => √∆ = 57
=> x = 1 hay x = -42/2.36 (loại vì x là số nguyên)
Đáp số: x = 1
\(\dfrac{5}{x}+1+\dfrac{4}{x}+1=\dfrac{3}{-13}\\ \Rightarrow\dfrac{9}{x}+2=-\dfrac{3}{13}\\ \Rightarrow\dfrac{9}{x}=-\dfrac{59}{13}\\ \Rightarrow x=-\dfrac{207}{59}\)
a. \(\dfrac{5}{x+1}+\dfrac{4}{x+1}=\dfrac{-3}{13}\)
ĐKXĐ: x ≠ -1
⇔ \(\dfrac{65}{13\left(x+1\right)}+\dfrac{52}{13\left(x+1\right)}=\dfrac{-3\left(x+1\right)}{13\left(x+1\right)}\)
⇔ 65 + 52 = -3(x + 1)
⇔ 117 = -3x - 3
⇔ 117 + 3 = -3x
⇔ 120 = -3x
⇔ x = \(\dfrac{120}{-3}=-40\) (TM)
b. -x + 2 + 2x + 3 + x + \(\dfrac{1}{4}\) + 2x + \(\dfrac{1}{6}\) = \(\dfrac{8}{3}\)
⇔ -x + 2x + x + 2x = \(\dfrac{8}{3}-\dfrac{1}{6}-\dfrac{1}{4}-3-2\)
⇔ 4x = -2,75
⇔ x = \(\dfrac{-2,75}{4}=\dfrac{-11}{16}\)
c. \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+2}\) = \(\dfrac{12}{26}\)
⇔ \(\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{2\left(3x+1\right)}=\dfrac{12}{26}\)
⇔ \(\dfrac{312\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) + \(\dfrac{520\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) - \(\dfrac{312\left(2x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
= \(\dfrac{48\left(2x+1\right)\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
⇔ 312(3x +1) + 520(3x + 1) - 312(2x + 1) = 48(2x + 1)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = (96x + 48)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = 288x2 + 96x + 144x + 48
⇔ 936x + 1560x - 624x - 96x - 144x - 288x2 = 48 - 312 - 520 + 312
⇔ 1632x - 288x2 = -472
⇔ -288x2 + 1632x + 472 = 0 (Tự giải tiếp, dùng phương pháp tách hạng tử)
⇔ x = 5,942459684 \(\approx\) 6
a) \(\frac{-x}{2}+\frac{2x}{3}+x+\frac{1}{4}+2x+\frac{1}{6}=\frac{3}{8}.\)
\(\frac{-x}{2}+\frac{2x}{3}+3x+\frac{5}{12}=\frac{3}{8}\)
\(x.\left(-\frac{1}{2}+\frac{2}{3}+3\right)+\frac{5}{12}=\frac{3}{8}\)
\(x\cdot\frac{19}{6}=-\frac{1}{24}\)
x = -1/76
b) \(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\frac{3}{2x+1}+\frac{2.5}{2.\left(2x+1\right)}-\frac{2.3}{3.\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{3+5-2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
=> 2x + 1 = 13
2x = 12
x = 6
\(a,-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)
\(\Rightarrow-\dfrac{6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x+8x+3x+3+4x+2}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{9x+5}{12}=\dfrac{8}{3}\)
\(\Rightarrow27x+15=96\)
\(\Rightarrow27x=81\)
\(\Rightarrow x=3\left(tm\right)\)
\(b,\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3+5-2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\left(tm\right)\)
#Toru
a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+2}{6}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{4\cdot8}{12}\)
\(\Rightarrow-6x+8x+3x+3+4x+2=32\)
\(\Rightarrow9x+5=32\)
\(\Rightarrow9x=32-5\)
\(\Rightarrow9x=27\)
\(\Rightarrow x=\dfrac{27}{9}\)
\(\Rightarrow x=3\)
b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\) (ĐK: \(x\ne-\dfrac{1}{2}\))
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=\dfrac{12}{2}\)
\(\Rightarrow x=6\left(tm\right)\)