K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: ΔAHE vuông tại H

=>O là trung điểm của AH
ΔABC cân tại A có AD là đường cao

nên D là trung điểm của BC

ΔEBC vuông tại E có ED là trung tuyến

nên DB=DE

=>ΔDBE cân tại D

d: góc OED=góc OEH+góc DEH

=góc OHE+góc DBE

=góc DBE+góc BHD=90 độ

=>DE là tiếp tuyến của (O)

Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.1. Chứng minh tứ giác CEHD nội tiếp .2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.3. Chứng minh ED = 1/2 BC.4. Chứng minh DE là tiếp tuyến của đường tròn (O).5. Tính độ dài DE biết DH = 2 cm, AH = 6 cm.Bài 3. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp...
Đọc tiếp

Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.

1. Chứng minh tứ giác CEHD nội tiếp .

2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Chứng minh ED = 1/2 BC.

4. Chứng minh DE là tiếp tuyến của đường tròn (O).

5. Tính độ dài DE biết DH = 2 cm, AH = 6 cm.

Bài 3. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. Chứng minh:

1. AC + BD = CD

2. Góc COD = 900

3. AC.BD = 1/4 AB2

4. OC // BM

5. AB là tiếp tuyến của đường tròn đường kính CD.

6. MN vuông góc AB.

7. Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.

0
6 tháng 4 2023

loading...  loading...  loading...  

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy