K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Giả sử tồn tại số tự nhiên $n$ thỏa mãn $(n^2+3n+5) \vdots 121$

\( \Rightarrow 4\left( {{n^2} + 3n + 5} \right) \vdots 121\\ \Leftrightarrow \left( {4{n^2} + 12n + 9 + 11} \right) \vdots 121\\ \Leftrightarrow \left[ {{{\left( {2n + 3} \right)}^2} + 11} \right] \vdots 121\left( 1 \right) \)

Ta có: \(121=11.11\)

Mà $(n^2+3n+5) \vdots 11$ (vì chia hết cho $121$) \(\Rightarrow {\left( {2n + 3} \right)^2} \vdots 11\)

Mà $11$ là số nguyên tố \( \Rightarrow {\left( {2n + 3} \right)^2} \vdots 121\left( 2 \right)\)

Từ $(1)$ và $(2)$ suy ra \(11 \vdots121\) (vô lí)

Vậy điều giả sử là sai $\Rightarrow n^2+3n+5$ không chia hết cho $121 \Rightarrow$ đpcm

1 tháng 4 2020

11 là số nguyên tố => \(\left(2n+3\right)^2⋮121\)

Em chưa hiểu chỗ này ạ anh có thể giảng giúp ko ?

P/s: E cũng đang cần bài này!

đồ ngu, người ta nói chứng minh mà 5 ở đâu đây

30 tháng 10 2016

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 

Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N . k cho mình nha bạn

9 tháng 7 2021

a) Ta có n3 - n + 4 

= n(n2 - 1) + 4

= (n - 1)n(n + 1) + 4 

Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp) 

mà 4 \(⋮̸\)

=> n3 - n + 4 không chia hết cho 3

28 tháng 11 2017

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

28 tháng 11 2017

Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.

=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.

Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11

mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121

=> (2n+3)^2+11  ko chia hết chia het cho 121

11 tháng 1 2020

E mới hk lớp 8 nên chỉ thử có j thông cảm!!

Giả sử tồn tại số tự nhiên n thỏa mãn \(n^2+3n+5⋮121\)

=> \(4\left(n^2+3n+5\right)⋮121\)

=> \(\left(4n^2+12n+9\right)+11⋮121\)

=> \(\left(2n+3\right)^2+11⋮121\)

Vì \(4\left(n^2+3n+5\right)⋮11\)  ( vì \(121⋮11\)) và \(11⋮11\)

=> \(\left(2n+3\right)^2⋮11\)

=> \(\left(2n+3\right)^2⋮121\)  ( vì 11 là số nguyên tố)

=> \(\left(2n+3\right)^2+11\) không chia hết cho 121  ( vì 11 không chia hết cho 121)

hay \(4\left(n^2+3n+5\right)\) không chia hết cho 121

=> \(n^2+3n+5\) ko chia hết cho 121 ( vì 4 và 121 nguyên tố cùng nhau)   ( đpcm)

29 tháng 3 2020

Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5121.

=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121

Mặt khác, n2+3n+5 11 (vì chia hết cho 121) => (2n+3)^2 11.

mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 121

=> (2n+3)^2+11 ko chia hết cho 121

=>dpcm.

29 tháng 3 2020

v:Đặng Quốc Huy

20 tháng 9 2024

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

6 tháng 9 2023

 Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\)

 Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Ta có đpcm.

6 tháng 9 2023

mk ko có hỉu

 

8 tháng 6 2020

Ta có : n \(⋮̸\)\(\Rightarrow n\)lẻ \(\Rightarrow n^2\)lẻ \(\Rightarrow4n^2\)chẵn

Mà \(3n+5\)chẵn

Suy ra \(4n^2+3n+5\)chẵn nên \(⋮\)2  ( 1 )

Ta có : n \(⋮̸\)3

\(\Rightarrow\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)

+) n = 3k + 1 thì \(4n^2+3n+5=4\left(3k+1\right)^2+3\left(3k+1\right)+5=36k^2+33k+12⋮3\)

+) n = 3k + 2 thì \(4n^2+3n+5=4\left(3k+2\right)^2+3\left(3k+2\right)+5=36k^2+57k+27⋮3\)

vậy với n \(⋮̸\)3 thì \(4n^2+3n+5⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) kết hợp với ( 2 ; 3 ) = 1 nên \(4n^2+3n+5⋮6\)