K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

Ta có : \(\left(x^2+4x+2\right)^2+4x^2+16x+11=0\)

=> \(\left(x^2+4x+2\right)^2+4x^2+16x+8+3=0\)

=> \(\left(x^2+4x+2\right)^2+4\left(x^2+4x+2\right)+3=0\)

- Đặt \(a=x^2+4x+2\) ta được phương trình :\(a^2+4a+3=0\)

=> \(a^2+a+3a+3=0\)

=> \(\left(a+3\right)\left(a+1\right)=0\)

=> \(\left[{}\begin{matrix}a+3=0\\a+1=0\end{matrix}\right.\)

- Thay \(a=x^2+4x+2\) ta được phương trình :\(\left[{}\begin{matrix}x^2+4x+2+3=0\\x^2+4x+2+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+4x+5=0\\x^2+4x+3=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+2\right)^2+1=0\left(VL\right)\\\left(x+2\right)^2-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{-1,-3\right\}\)

a) Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2+\left(x^2-2x\right)-3\left(x^2-2x\right)-3=0\)

\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2-2x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)

Vậy: S={1;-1;3}

28 tháng 3 2021

bạn có thể làm theo cách lớp 9 được ko???

 

16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

1 tháng 9 2023

1) \(\sqrt[]{9\left(x-1\right)}=21\)

\(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)

2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)

\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)

\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)

mà \(\sqrt[]{1-x}\ge0\)

\(\Leftrightarrow pt.vô.nghiệm\)

3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)

\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)

\(\Leftrightarrow2x=50\Leftrightarrow x=25\)

1 tháng 9 2023

1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))

\(\Leftrightarrow3\sqrt{x-1}=21\)

\(\Leftrightarrow\sqrt{x-1}=7\)

\(\Leftrightarrow x-1=49\)

\(\Leftrightarrow x=49+1\)

\(\Leftrightarrow x=50\left(tm\right)\)

2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))

\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý) 

Phương trình vô nghiệm

3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)

\(\Leftrightarrow2x=50\)

\(\Leftrightarrow x=\dfrac{50}{2}\)

\(\Leftrightarrow x=25\left(tm\right)\)

4) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

5) \(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow\left|x-3\right|=3-x\)

\(\Leftrightarrow x-3=3-x\)

\(\Leftrightarrow x+x=3+3\)

\(\Leftrightarrow x=\dfrac{6}{2}\)

\(\Leftrightarrow x=3\)

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

15 tháng 6 2020

Đặt: \(x^2+4x+10=t\)

Ta có bất phương trình: 

\(t^2-7\left(t+1\right)+7< 0\)

<=> \(t^2-7t< 0\)

<=> \(t\left(t-7\right)< 0\)

TH1: \(\hept{\begin{cases}t< 0\\t-7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}t< 0\\t>7\end{cases}}\)vô lí

Th2: \(\hept{\begin{cases}t>0\\t-7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}t>0\\t< 7\end{cases}}\Leftrightarrow0< t< 7\)

Với 0 < t < 7 ta có: 

\(0< x^2+4x+10< 7\)

<=> \(0< \left(x+2\right)^2+6< 7\)

<=> \(\left(x+2\right)^2< 1\)

<=> \(-1< x+2< 1\)

<=> - 3 < x < -1

Kết luận:...

18 tháng 9 2015

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

3 tháng 11 2019

b) \(1+4x-3|x+2|+4=0\)

\(\Leftrightarrow4x-3|x+2|=-5\left(1\right)\)

TH1: Với \(|x+2|=x+2\)thay vào (1) ta được:

\(4x-3\left(x+2\right)=-5\)

\(\Leftrightarrow4x-3x-6=-5\)

\(\Leftrightarrow x=1\)(chọn tự thử lại nhé nó =0 )

TH2: Với \(|x+2|=-x-2\)thay vào (1) ta được: 

\(4x-3\left(-x-2\right)=-5\)

\(\Leftrightarrow4x+3x+6=-5\)

\(\Leftrightarrow7x=-11\)

\(\Leftrightarrow x=\frac{-11}{7}\)( loại tự thử lại nhé nó ko =0 )

Vậy x=1

27 tháng 10 2020

a) Thiếu đề 

b) ĐKXĐ : \(x\ge2\)

\(\left(x^2+3x\right)\sqrt{x-2}=0\)

\(\Leftrightarrow x\left(x+3\right)\sqrt{x-2}=0\)

+) x = 0 ( KTM )

+) x + 3 = 0 <=> x = -3 ( KTM )

+) \(\sqrt{x-2}=0\Leftrightarrow x=2\left(tm\right)\)

Vậy ........