Tìm số tự nhiên n dể \(1^n+2^n+3^n+4^n\) chia hết cho 5.]
Giải giùm mik nha. Mik đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3n+5⋮n+1.
(3n+3)+2⋮n+1.
3(n+1)+2⋮n+1.
mà 3(n+1)⋮n+1
⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.
Ta lập bảng xét giá trị
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)
TC : 3n-5 -[3.(n+1)]:hết cho n+1
3n-5 -(3n+3) :hết cho n+1
3n- 5 - 3n-3:hết cho n+1
2:hết cho n+1 =≫n+1 thuôc Ư(2)={1;2}
thay n+1lần lượt= 1;2 là ban sẽ ra
n2 + n + 4 chia hết cho n + 1
=> n.n + n + 4 chia hết cho n + 1
=> n(n + 1) + 4 chia hết cho n + 1
Vì n(n + 1) chia hết cho n + 1 nên để n(n + 1) + 4 chia hết cho n + 1 thì 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4)
=> n + 1 thuộc {1;2;4}
Ta có bảng
n + 1 | 1 | 2 | 4 |
n | 0 | 1 | 3 |
Vậy n thuộc {0;1;3}
Xin lỗi nha, mik mới lớp 5 nên chỉ biết giải 2 bài còn lại. Bài 2 vì chữ số hàng chục gấp 3 lần chữ số hàng đơn vị mà số đó lại chia hết cho 2 => số đó là 62 (vì số 2 ở hàng đơn vị là số duy nhất có thể nhân với 3 mà ra số cí một chữ số). Bài 3 thì:
Hàng nghìn: 4 lần chọn
Hang trăm: 3 lần chọn
Hàng chục: 2 lần chọn
Hàng đơn vị: 1 lần chọn
=> Số các số hạng có the viết được là: 4 x 3 x 2 = 24
Kết bạn với tôi đi thtl_nguyentranhuyenanh nha
Câu trả lời tôi ko biết bởi mới học lớp 5
3n+1 chia hết 11-n
<=> 3n+1+(11-n).3 chia hết 11-n (11-n chia hết cho 11-n)
<=>12 chia hết 11-n
=> 11-n thuộc tập hợp Ư(12) = {1; 2; 3; 4; 6 ; 12}
Mà 11-n <12 =)) 11-n thuộc tập hợp {1; 2; 3; 4; 6}
Vậy n thuộc tập hợp {5; 7; 8; 9; 10}
Mình đánh máy nên ko dùng kí hiệu đc, mong bạn thông cảm giúp mình
n=n-2+2 vì n chia hết cho n-2 nên 2 phải chia hết cho n-2
suy ra n-2 thuộc U(2)={1;2)
TH1: n-2=1 thì n=3
TH2; n-2=2 thì n=4
Vậy n=3 hoặc n=4
n(n+3)(n+6)
n(n2+9n+18)
n[(n+1)(n+2)+6n+16)]
n(n+1)(n+2)+6n2+16n chia hết 2
kb với mình nhé
2^n/32 = 4 => 2^n = 4 . 32 = 128 => n =7
27^n . 9^n = 9^27 . 81
=> (27.9)^n = 9^27 . 9^2
=> 243^n = 9^54
=> 243^n = 243^1458
vay n=1458
1/9 . 3^4 . 3^n+1 = 9^4
=> 9 . 3^n+1 = 6561
=> 3^n+1 = 6561 /9
=> 3^n+1 = 729
=> n = 5
N=1 nha!@#$%&*
Với n = 0 => A = 1n + 2n + 3n + 4n = 4( loại )
Với n = 1 => A= 1n + 2n + 3n + 4n = 10 \(⋮\)5 ( t/m )
Với n \(\ge\)2
+) Nếu n là số chẵn => n = 2k ( k \(\in\)N)
=> A = 1 + 4k + 9k + 16k
Ta thấy : 4 chia 5 dư ( - 1 ) => 4k chia 5 dư ( -1 )k
: 9 chia 5 dư ( - 1 ) => 9k chia 5 dư ( - 1 )k
: 16 chia 5 dư 1 => 16k chia 5 dư 1
=> A chia 5 dư 1 + ( - 1 )k + ( - 1 )k + 1
Nếu k chẵn => A chia 5 dư 4 ( loại )
Nếu k lẻ => k = 2m + 1 ( m \(\in\)N )
=> A = 1 + 42m . 4 + 92m . 9 + 162m . 16
= 1 + 16m . 4 + 81m . 9 + 256m .16
Vì 16 ; 81 ; 256 chia 5 dư 1 => A chia 5 có số dư bằng ( 1 + 4 + 9 +16 ) cho 5 => A \(⋮\) 5
=> n = 2. ( 2m + 1 ) = 4m + 2 thì A \(⋮\)5
Nếu n lẻ => n = 2h + 1 ( h \(\in\)N
=> A = 1 + 4h . 2 + 9h . 3 + 16h . 4
=> A chia 5 dư 1 +( -1)h .2 + (-1)h . 3 + 4
Khi h lẻ để A \(⋮\)5 => n = 2. ( 2.i + 1 ) + 1 = 4.i + 3 ( i \(\in\)N )