Cho $f(x)=ax^2+bx+c>0$ với mọi $x$ và $a,b,c>0; b\neq 1$
CMR:
$\frac{3350a+1340c+4ac+2b+1}{b}>2014$
Giúp mình với ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi a > 0 và phương trình vô nghiệm thì b2 – 4ac < 0.
Do đó: > 0
Suy ra: ax2 + bx + c = a > 0, với mọi x.
Từ giải thiết :\(f\left(x\right)=ax^2+bx+c>0\Rightarrow\Delta< 0\Leftrightarrow4ac>b^2.\left(1\right)\)(bạn đọc ở chuyên đề Dấu tam thức bậc hai có cái này)
Với a,b,c nguyên dương (b khác 1)
Áp dụng bất đẳng thức AM-GM cho 2 số không âm ta có:
\(3350a+1340c\ge2\sqrt{3350a.1340c}=2\sqrt{335^2.10.4ac}\)
Kết hợp với (1) suy ra:
\(3350a+1340a\ge2.335.\sqrt{b^2.10}>2.335.3.b=2010b.\)
\(\Rightarrow3350a+1340c+2b+1>2012b+1\)
\(\Rightarrow3350a+1340c+4ac+2b+1>b^2+2012b+1\)
\(\Rightarrow\frac{3350a+1340b+4ac+2b+1}{b}>b+2012+\frac{1}{b}\)
Mà \(b+\frac{1}{b}\ge2\sqrt{b.\frac{1}{b}}=2\Rightarrow b+2012+\frac{1}{b}\ge2014.\)
Suy ra \(\frac{3350a+1340c+4ac+2b+1}{b}>2014.\)
\(\Delta=b^2-4ac\le0\Rightarrow b^2\le4ac\Rightarrow\frac{a}{b}.\frac{c}{b}\ge\frac{1}{4}\)
Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\Rightarrow xy\ge\frac{1}{4}\)
\(F=4x+y\ge4\sqrt{xy}\ge4\sqrt{\frac{1}{4}}=2\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\) hay \(b=c=4a\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Linh nè - Toán lớp 9 | Học trực tuyến
Ta có \(f\left(x\right)=ax^2+bx+c>0\forall x\)
\(\Rightarrow f\left(-2\right)>0\Rightarrow4a-2b+c>0\Rightarrow4a+c>2b\)(*)
Ta có f(x)=ax2+bx+c >0 với mọi x
=> f(-1) >0 => a-b+c>0 => a+c >b (**)
Từ (*) (**) => 5a+2c > 3b => \(\frac{5a+2c}{b}>3\left(b>0\right)\)
\(\Rightarrow\frac{3350a+1340c}{b}>2010\)(***)
Mặt khác ta lại có:
f(x)=ax2+bx+c>0 với mọi x
=> b2<4ac (vì a>0) => 4ac>b2
\(\Leftrightarrow\frac{4ac}{b}>b\Leftrightarrow\frac{4ac}{b}+\frac{1}{b}>b+\frac{1}{b}\ge2\)(Theo BĐT Cosi), mà 0<b\(\ne\)1
=> \(\frac{4ac}{b}+\frac{1}{b}>2\)(****)
Từ (***)(****) \(\Rightarrow\frac{3350+1340c}{b}+\frac{4ac+1}{b}>2012\)
\(\Leftrightarrow\frac{3350+1340c+4ac+2b+1}{b}>2014\left(đpcm\right)\)