K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Khi a > 0 và phương trình vô nghiệm thì b2 – 4ac < 0.

Do đó: > 0

Suy ra: ax2 + bx + c = a > 0, với mọi x.


8 tháng 3 2019

Nhưng vì sao lại ra được cái dòng cuối vậy bạn

14 tháng 11 2019

Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a > 0 (gt), Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 với mọi x, a, b ⇒ Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình ax2 + bx + c = 0 vô nghiệm nên

Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy a x 2   +   b x   +   c  = Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 với mọi x.

9 tháng 2 2019

Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a > 0 (gt), Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 với mọi x, a, b ⇒ Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình ax2 + bx + c = 0 vô nghiệm nên

Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy ax2 + bx + c = Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 với mọi x.

24 tháng 7 2017

Câu hỏi của Nguyễn Như Ý - Toán lớp 10 | Học trực tuyến

21 tháng 3 2020

Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có

\(ax_1^2+bx_1+c=0\)

chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)

ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)

suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)

Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)

áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :

\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)

1 tháng 7 2020

Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)

Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)

Hay \(\Delta>\left(a-c\right)^2\ge0\)

Vậy ta có điều phải chứng mình 

3 tháng 7 2020

b > a + c thì chưa đủ điều kiện chứng minh b^2 > (a + c)^2 mà?

9 tháng 7 2019

Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo link này nhé!