giai pt:((x+1/9)+1)+((x+2/8)+1=((x+3/8)+1)+((x+4)+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge-2\)
Đặt \(a=\sqrt{x+2},b=\sqrt{x^2-2x+4}\Rightarrow\left\{{}\begin{matrix}2a^2=2x+4\\b^2=x^2-2x+4\end{matrix}\right.\Rightarrow2a^2+b^2-9=x^2-1\)
\(pt\Leftrightarrow9\left(ab-2\right)=2\left(2a^2+b^2-9\right)\\ \Leftrightarrow9ab-18=4a^2+2b^2-18\\ \Leftrightarrow4a^2+2b^2-9ab=0\\ \Leftrightarrow\left(a-2b\right)\left(4a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\4a=b\end{matrix}\right.\)
\(a=2b\Rightarrow\sqrt{x+2}=2\sqrt{x^2-2x+4}\Leftrightarrow x+2=4x^2-8x+16\Leftrightarrow4x^2-9x+14=0\)vô nghiệm
\(4a=b\Rightarrow4\sqrt{x+2}=\sqrt{x^2-2x+4}\Leftrightarrow16x+32=x^2-2x+4\Leftrightarrow x^2-18x-28=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9+\sqrt{109}\left(TM\right)\\x=9-\sqrt{109}\left(TM\right)\end{matrix}\right.\)
\(ĐK:-1\le x\le8\)
Đặt \(\sqrt{1+x}=u;\sqrt{8-x}=v\)thì \(\left(u+v\right)^2=9+2\sqrt{uv}\Rightarrow\sqrt{uv}=\frac{\left(u+v\right)^2-9}{2}\)
Phương trình lúc này có dạng \(\left(u+v\right)+\frac{\left(u+v\right)^2-9}{2}=3\Leftrightarrow\left(u+v\right)^2+2\left(u+v\right)-15=0\)\(\Leftrightarrow\left(u+v+5\right)\left(u+v-3\right)=0\Leftrightarrow\orbr{\begin{cases}u+v=-5\left(L\right)\\u+v=3\left(tm\right)\end{cases}}\)
Như vậy, \(u+v=3\Rightarrow\sqrt{uv}=\frac{3^2-9}{2}=0\Rightarrow uv=0\)
u, v là hai nghiệm của phương trình \(t^2-3t=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=0\end{cases}}\)
* Nếu u = 3, v = 0 thì \(\hept{\begin{cases}\sqrt{1+x}=3\\\sqrt{8-x}=0\end{cases}}\Rightarrow x=8\left(tm\right)\)
* Nếu u = 0, v = 3 thì \(\hept{\begin{cases}\sqrt{1+x}=0\\\sqrt{8-x}=3\end{cases}}\Rightarrow x=-1\left(tm\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;8\right\}\)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
\(ĐKXĐ:x\ne0;-2;-4;-6;-8\)\(\frac{1}{x\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+8\right)}=\frac{4}{105}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{2}{\left(x+6\right)\left(x+8\right)}=\frac{8}{105}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+...+\frac{1}{x+6}-\frac{1}{x+8}=\frac{8}{105}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+8}=\frac{8}{105}\)
Quy đồng làm nốt
\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\) ( ĐK : \(x\ne-2\) )
\(\Leftrightarrow\dfrac{12}{x^3+2^3}=1+\dfrac{1}{x+2}\)
\(\Leftrightarrow\dfrac{12}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}+\dfrac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow12=\left(x+2\right)\left(x^2-2x+4\right)+x^2-2x+4\)
\(\Leftrightarrow x^3+8+x^2-2x+4=12\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-2\left(L\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}\)
Ta có : \(\left(x-1\right)^4-8\left(x-1\right)^2-9=0\)
- Đặt \(\left(x-1\right)^2=a\) ta được phương trình : \(a^2-8a-9=0\)
Ta có : \(a-b+c=1-\left(-8\right)+9=0\)
Nên phương trình có 2 nghiệm \(a_1=-1,a_2=-\frac{c}{a}=9\)
=> \(\left[{}\begin{matrix}\left(x-1\right)^2=-1\left(VL\right)\\\left(x-1\right)^2=9\end{matrix}\right.\)
=> \(\left(x-1\right)^2=9\)
=> \(\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy .....
bn coi lại đề ik ạ
\(\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
\(\Rightarrow x=-10\)