\(\sqrt{4-2\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
b, t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).(\(\sqrt{10}\)-\(\sqrt{2}\))
t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).\(\sqrt{2}\)(\(\sqrt{5}\) -1)
t = (\(\sqrt{5}\) -1).(\(\sqrt{5}\) -1).(3 +\(\sqrt{5}\))
t = (\(\sqrt{5}\) -1)2.(3 +\(\sqrt{5}\))
t = (5 - \(2\sqrt{5}\)+1).(3 +\(\sqrt{5}\))
t = 15 + \(5\sqrt{5}\) \(-6\sqrt{5}\)-10+1+\(\sqrt{5}\)
t = 6
\(=\left(\sqrt{3}+4\right)\sqrt{\left(4-\sqrt{3}\right)^2}+\left(\sqrt{3}-4\right)\sqrt{\left(4+\sqrt{3}\right)^2}=\left(\sqrt{3}+4\right)\left(4-\sqrt{3}\right)+\left(\sqrt{3}-4\right)\left(4+\sqrt{3}\right)\)
\(=16-3+3-16=0\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)
2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)
\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)
\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
\(\sqrt{29-4\sqrt{7}}=\sqrt{\left(2\sqrt{7}\right)^2-2.2\sqrt{7}.1+1^2}=\sqrt{\left(2\sqrt{7}-1\right)^2}=\left|2\sqrt{7}-1\right|\)
\(=2\sqrt{7}-1\)
\(\sqrt{19+6\sqrt{2}}=\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.1+1^2}=\sqrt{\left(3\sqrt{2}+1\right)^2}=\left|3\sqrt{2}+1\right|\)
\(=3\sqrt{2}+1\)
\(\sqrt{28-6\sqrt{3}}=\sqrt{\left(3\sqrt{3}\right)^2-2.3\sqrt{3}.1+1^2}=\sqrt{\left(3\sqrt{3}-1\right)^2}=\left|3\sqrt{3}-1\right|\)
\(=3\sqrt{3}-1\)
\(\sqrt{46-6\sqrt{5}}=\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}.1+1^2}=\sqrt{\left(3\sqrt{5}-1\right)^2}=\left|3\sqrt{5}-1\right|\)
\(=3\sqrt{5}-1\)
\(\sqrt{49+8\sqrt{3}}=\sqrt{\left(4\sqrt{3}\right)^2+2.4\sqrt{3}.1+1^2}=\sqrt{\left(4\sqrt{3}+1\right)^2}=\left|4\sqrt{3}+1\right|\)
\(=4\sqrt{3}+1\)
\(\sqrt{32-8\sqrt{7}}=\sqrt{\left(2\sqrt{7}\right)^2-2.2\sqrt{7}.2+2^2}=\sqrt{\left(2\sqrt{7}-2\right)^2}=\left|2\sqrt{7}-2\right|\)
\(=2\sqrt{7}-2\)
\(\sqrt{29-4\sqrt{7}}=2\sqrt{7}-1\)
\(\sqrt{19+6\sqrt{2}}=3\sqrt{2}+1\)
\(\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)
\(\sqrt{46-6\sqrt{5}}=3\sqrt{5}-1\)
\(\sqrt{49+8\sqrt{3}}=4\sqrt{3}+1\)
\(\sqrt{32-8\sqrt{7}}=2\sqrt{7}-2\)
\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)
\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)
=> \(A=\sqrt{5}\)
\(A=\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}\)
\(A=\left(4+\sqrt{3}\right)\sqrt{4^2-2\cdot4\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(A=\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}\)
\(A=\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)\)
\(A=4^2-3\)
\(A=13\)
\(B=\dfrac{3}{4+\sqrt{13}}+\dfrac{\sqrt{52}}{2}-3\)
\(B=\dfrac{3\left(4-\sqrt{13}\right)}{\left(4-\sqrt{13}\right)\left(4+\sqrt{13}\right)}+\dfrac{2\sqrt{13}}{2}-3\)
\(B=\dfrac{3\left(4-\sqrt{13}\right)}{16-13}+\sqrt{13}-3\)
\(B=4-\sqrt{13}+\sqrt{13}-3\)
\(B=4-3\)
\(B=1\)
a: Ta có: \(\sqrt{\left(5-\sqrt{19}\right)^2}-\sqrt{\left(4-\sqrt{19}\right)^2}\)
\(=5-\sqrt{19}-\sqrt{19}+4\)
\(=9-2\sqrt{19}\)
b: Ta có: \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
\(=3-2\sqrt{2}-3+2\sqrt{2}\)
=0
c.
Căn bậc 2 không xác định do $2-\sqrt{5}< 0$
d.
\(=\sqrt{(3+\sqrt{3})^2}(3+\sqrt{3})=|3+\sqrt{3}|(3+\sqrt{3})=(3+\sqrt{3})^2=12+6\sqrt{3}\)
e.
\(=(2-\sqrt{5})\sqrt{(2+\sqrt{5})^2}=(2-\sqrt{5})|2+\sqrt{5}|=(2-\sqrt{5})(2+\sqrt{5})=4-5=-1\)
`A=\sqrt{6-2\sqrt{5}}`
`A=\sqrt{(\sqrt{5}-1)^2}`
`A=\sqrt{5}-1`
_________
`B=\sqrt{4-\sqrt{12}}=\sqrt{4-2\sqrt{3}}`
`B=\sqrt{(\sqrt{3}-1)^2}`
`B=\sqrt{3}-1`
_________
`C=\sqrt{19-8\sqrt{3}}`
`C=\sqrt{(4-\sqrt{3})^2}`
`C=4-\sqrt{3}`
_________
`D=\sqrt{5-2\sqrt{6}}`
`D=\sqrt{(\sqrt{3}-\sqrt{2})^2}`
`D=\sqrt{3}-\sqrt{2}`
\(A=\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5}^2-2\sqrt{5}+1^2}=\sqrt{ \left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(B=\sqrt{4-\sqrt{12}}=\sqrt{4-\sqrt{4.3}}=\sqrt{4-2\sqrt{3}}=\sqrt{\sqrt{3^2}-2\sqrt{3}+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(C=\sqrt{19-8\sqrt{3}}=\sqrt{19-2.4.\sqrt{3}}\sqrt{\sqrt{3}^2-2.4.\sqrt{3}+4^2}=\sqrt{\left(\sqrt{3}-4\right)^2}=\sqrt{3}-4\)
\(D=\sqrt{5-2\sqrt{6}}=\sqrt{5-2.\sqrt{2}.\sqrt{3}}=\sqrt{\sqrt{3}^2-2.\sqrt{2}.\sqrt{3}+\sqrt{2^2}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
\(\sqrt{4-2\sqrt{3}}\)+\(\sqrt{19-8\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.4+4^2}\)
=\(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-4\right)^2}\)\(=\sqrt{3}-1+4-\sqrt{3}=3\)