(x+1)(x+2)(x+4)(x+5)=40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)
\(\Leftrightarrow x^2+5x=0\)
=>x=0 hoặc x=-5
3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
HOC24 có câu rất hay :Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao? đúng tính bà đó . Lên lớp đừng đập nha :)
a) 3 . ( 1/2 - x ) + 1/3 = 7/6 - x
=> 3/2 - 3x + 1/3 = 7/6-x
=> -3x +x=7/6 - 3/2 - 1/3
=> -2x = -2/3
=> x=-2/3 : (-2) = 1/3
hết :)
Hướng dẫn giải:
a) 3 x (20 – 5)
Cách 1:
3 x (20 – 5) = 3 x 15 = 45
Cách 2:
3 x (20 – 5) = 3 x 20 – 3 x 5 = 60 – 15 = 45
b) 20 x (40 – 1)
Cách 1:
20 x (40 – 1) = 20 x 39 = 780
Cách 2:
20 x (40 – 1) = 20 x 40 – 20 x 1 = 800 – 20 = 780
Đặt \(x=y-3\).
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(y-2\right)\left(y-1\right)\left(y+2\right)\left(y+1\right)=\left(y^2-1\right)\left(y^2-4\right)=40\)
\(\Rightarrow y^2=9\)
\(\Rightarrow x=\hept{\begin{cases}0\\-6\end{cases}}\)
( x + 1) + )+ ( x + 2) +( x + 3) +) + ( x + 4 ) + ( x + 5 ) = 40
( x+x+x+x+x ) + ( 1+2+3+4+5 ) = 40
x*5 + 15 = 40
x*5 = 40-15
x*5 = 25
x= 25 :5
x=5
x+1+x+2+x+3+x+4+x+5=40
5*x+(1+2+3+4+5) =40
5*x+15 =40
5*x =40-15
5*x =25
x =25/5
x =5
3/5 X + 2X + 40 = 53
13/5 X = 53 - 40
13/5 X = 13
X = 13 : 13/5
X = 5
1)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right).\left(x+2\right)\left(x+4\right)-40=0\)
\(\Leftrightarrow\left(x^2+6x+5\right).\left(x^2+6x+8\right)-40=0\)
Đặt \(a=x^2+6x+6\) ta có:
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)-40=0\)
\(\Leftrightarrow a^2+a-2-40=0\)
\(\Leftrightarrow a^2-6x+7x-42=0\)
\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+6=6\\x^2+6x+6=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
(\(x^2+6x+13=\left(x+3\right)^2+4>0\left(loại\right)\))
Vậy.................
3)
\(\left|x+4\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=3-2x\\x+4=-3+2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=7\end{matrix}\right.\)
Vậy..........
a) \(...\Rightarrow x.\left(2+5\right)=14\Rightarrow x.7=14\Rightarrow x=14:7=2\)
b) \(...\Rightarrow x.\left(9+1\right)=20\Rightarrow x.10=20\Rightarrow x=20:10=2\)
c) \(...\Rightarrow x.\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=1999\Rightarrow x.\dfrac{3}{3}=1999\Rightarrow x=1999\)
d) \(...\Rightarrow11.x+22=5.x+40\Rightarrow11.x-5.x=40-22\Rightarrow6.x=18\Rightarrow x=18:6=3\)
e) \(...\Rightarrow11.x-66=4.x+11\Rightarrow11.x-4.x=11+66\Rightarrow7.x=77\Rightarrow x=77:7=11\)
f) \(...\Rightarrow\left(3.x-12\right):x=12-10\)
\(\Rightarrow3.x-12=2.x\)
\(\Rightarrow3.x-2.x=12\)
\(\Rightarrow x=12\)
g) \(...\Rightarrow\left(5.x+7\right):x=26-20\)
\(\Rightarrow5.x+7=6.x\)
\(\Rightarrow6.x-5.x=7\)
\(\Rightarrow x=7\)
h) \(...\Rightarrow x.\left(1999-1\right)=1999.\left(1997+1\right)\)
\(\Rightarrow x.1998=1999.1998\)
\(\Rightarrow x=1999.1998:1998\)
\(\Rightarrow x=1999\)
a, \(x\times\) 2 + \(x\times\) 5 = 14
\(x\) \(\times\) ( 2 + 5) = 14
\(x\) \(\times\) 7 = 14
\(x\) = 14: 7
\(x\) = 2
b, \(x\times9\) + \(x\)= 20
\(x\) \(\times\)( 9 + 1) = 20
\(x\) \(\times\) 10 = 20
\(x\) = 2
c, \(x\) : \(\dfrac{3}{2}\) + \(x\times\dfrac{1}{3}\) = 1999
\(x\times\) \(\dfrac{2}{3}\) + \(x\) \(\times\dfrac{1}{3}\) = 1999
\(x\times\) ( \(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) = 1999
\(x\) = 1999
d, 11\(\times\)(\(x+2\)) = 5 \(\times\) \(x\) + 40
11 \(\times\) \(x\) + 22 = 5 \(\times\) \(x\) + 40
11 \(\times\) \(x\) = 5 \(\times\) \(x\) + 40 - 22
11 \(\times\) \(x\) = 5 \(\times\) \(x\) + 18
11 \(\times\) \(x\) - 5 \(\times\) \(x\) = 18
\(x\) \(\times\) ( 11 - 5) = 18
\(x\) \(\times\) 6 = 18
\(x\) = 3
(x + 1)(x + 2)(x + 4)(x + 5) = 40
<=> (x + 1)(x + 5)(x + 2)(x + 4) - 40 = 0
<=> (x2 + 6x + 5)(x2 + 6x + 8) - 40 = 0
Đặt x2 + 6x + 5 = a <=> a(a + 3) - 40 = 0
<=> a2 + 3a - 40 = 0
<=> a2 + 8a - 5a - 40 = 0
<=> (a + 8)(a - 5) = 0
<=> \(\orbr{\begin{cases}a+8=0\\a-5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+6x+5+8=0\\x^2+6x+5-5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+6x+9+4=0\\x^2+6x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+3\right)^2+4=0\left(vn\right)\\x\left(x+6\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\) Vậy S = {0; -6}