Cho tam giác ABC có cạnh AB = AC. Gọi H là trung điểm của BC.
a) Chứng minh rằng tam giác ACH bằng tam giác ABH
b) Chứng minh rằng AH là đường trung trực của BC
c) Trên tia đối của tia HA lấy điểm I sao cho HA = HI. Chứng minh rằng IC // AB
d) Chứng minh góc CAH bằng tam giác CIH
a) Xét \(\Delta ABH\) và \(\Delta ACH\) có :
AB = AC ; AH : chung ; BH = CH
=> \(\Delta ABH\) = \(\Delta ACH\)
b) Có AB = AC
=> \(\Delta ABC\) cân tại A mà AH là trung tuyến
=> AH là trung trực của BC
c) Xét \(\Delta ABH\) và \(\Delta ICH\) có :
AH = HI ; BH = HC ; \(\widehat{AHB}=\widehat{IHC}=90^o\)
=> \(\Delta ABH\) = \(\Delta ICH\)
=> \(\widehat{ABH}=\widehat{ICH}\) mà hai góc này nằm ở vị trí slt
=> AB // CI
d) Xét \(\Delta ACI\) có CH vừa là đường caio ; CH vừa là trung tuyến
=> \(\Delta ACI\) cân tại C
=?> \(\widehat{CAI}=\widehat{CIA}\)
Hình vẽ đây bạn:
Chúc bạn học tốt!