Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét tam giác $ABH$ và $ACH$ có:
$AB=AC$ (do $ABC$ cân tại $A$)
$AH$ chung
$BH=CH$ (do $H$ là trung điểm $BC$)
$\Rightarrow \triangle ABH=\triangle ACH$ (c.c.c)
b. Từ tam giác bằng nhau phần a suy ra $\widehat{AHB}=\widehat{AHC}$
Mà $\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^0$
$\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow AH\perp BC$
Vậy $AH\perp BC$ tại trung điểm $H$ của $BC$ nên $AH$ là trung trực $BC$
c. Xét tam giác $ABH$ và $ICH$ có:
$\widehat{AHB}=\widehat{IHC}$ (đối đỉnh)
$AH=IH$
$BH=CH$
$\Rightarrow \triangle ABH=\triangle ICH$ (c.g.c)
$\Rightarrow \widehat{ABH}=\widehat{ICH}$
Mà 2 góc này ở vị trí so le trong nên $IC\parallel AB$
Từ tam giác bằng nhau ở trên suy ra $\widehat{CIH}=\widehat{BAH}(1)$
Từ tam giác bằng nhau phần a suy ra $\widehat{BAH}=\widehat{CAH}(2)$
Từ $(1); (2)\Rightarrow \widehat{CIH}=\widehat{CAH}$
a) Xét \(\Delta ABH\) và \(\Delta ACH\) có :
AB = AC ; AH : chung ; BH = CH
=> \(\Delta ABH\) = \(\Delta ACH\)
b) Có AB = AC
=> \(\Delta ABC\) cân tại A mà AH là trung tuyến
=> AH là trung trực của BC
c) Xét \(\Delta ABH\) và \(\Delta ICH\) có :
AH = HI ; BH = HC ; \(\widehat{AHB}=\widehat{IHC}=90^o\)
=> \(\Delta ABH\) = \(\Delta ICH\)
=> \(\widehat{ABH}=\widehat{ICH}\) mà hai góc này nằm ở vị trí slt
=> AB // CI
d) Xét \(\Delta ACI\) có CH vừa là đường caio ; CH vừa là trung tuyến
=> \(\Delta ACI\) cân tại C
=?> \(\widehat{CAI}=\widehat{CIA}\)
a) Xét tam giác ABC có AB = AC => Tam giác ABC cân tại A
=> AH vừa là đường trung tuyến vừa là tia phân giác góc BAC
b) Vì tam giác ABC cân tại A (cmt)
=> AH cũng là đường cao
=> AH vuông góc BC
c) Xét tứ giác ABCK có
H là trung điểm BC (gt)
H là trung điểm AK (gt)
=> Tứ giác ABCK là hình bình hành
=> CK // AB
a) Xét tam giác AHB và tam giác AHC có :
AB=AC ( gt )
BH = HC ( vì H là trung điểm của cạnh BC )
AH : cạnh chung
do đó tam giác AHB = tam giác AHC ( c.c.c )
suy ra góc BAH = HAC ( 2 góc t/ứ )
nên AH là tia phân giác của góc BAC
b) Có tam giác AHB = tam giác AHC ( c/m trên )
suy ra góc BHA = góc CHA ( 2 góc t/ứ )
mà B , H , C thẳng hàng
suy ra góc BHC là góc bẹt
suy ra góc BHA = góc CHA = 90 độ
nên AH vuông góc với BC
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
Suy ra: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Ta có: M nằm trên đường trung trực của AC
nên MA=MC
hay ΔMAC cân tại M
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của \(\widehat{BAC}\)
b: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AH là đường trung trực của BC
hay AH\(\perp\)BC
a, Xét tam gác ABH và tam giác ACH có:
AB=AC (gt)
BH=CH
AH là cạnh chung
=> tam giác ABH=ACH ( c.c.c)
=> góc BAH = CAH ( hai góc tương ứng )
Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC
b, Xét tam giác vuông ABH và tam giác vuông KCH có :
BH=CH (gt)
HK=HA (gt)
=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )
=> góc HAB = góc HKC ( hai góc tương ứng )
Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )
a Xét ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xét ΔAHB vuông tại H và ΔMHC vuông tại H có
HA=HM
HB=HC
=>ΔAHB=ΔMHC
=>góc HAB=góc HMC
=>AB//MC và AB=MC=AC
=>ΔMCA cân tại C
Xem lại đề câu a
GT
△ABC: AB = AC. HC = HB = BC/2. HA = HI
KL
a, ?
b, AH là đường trung trực của BC
c, IC // AB
d, CAH = CIH
Bài giải:
a, Xem lại đề
b, Xét △AHB và △AHC
Có: AB = AC (gt)
BH = HC (gt)
AH là cạnh chung
=> △AHB = △AHC (c.c.c)
=> AHB = AHC (2 góc tương ứng)
Mà AHB + AHC = 180o (2 góc kề bù)
=> AHB = AHC = 180o : 2 = 90o
=> AH ⊥ BC
Mà HB = HC
=> AH là đường trung trực của BC
c, +) Nếu học trường hợp bằng nhau của tam giác vuông r thì trình bày như này cũng đc nè :))
C1: Xét △AHB vuông tại H và △IHC vuông tại H
Có: AH = HI (gt)
HB = HC (gt)
=> △AHB = △IHC (2cgv)
=> ABH = HCI (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le tron
=> AB // IC
+) Còn chưa học thì trình bày vậy:
C2: Xét △AHB và △IHC
Có: AH = HI (gt)
AHB = IHC (2 góc đối đỉnh)
HB = HC (gt)
=> △AHB = △IHC (c.g.c)
=> ABH = HCI (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le tron
=> AB // IC
+) Nói chung trình bày cách nào cũng đc nếu học hết rồi
d, Vì △AHB = △IHC (cmt) => HAB = HIC (2 góc tương ứng)
Mà HAB = HAC (△AHB = △AHC)
=> HIC = HAC (đpcm)