cho phương trình x^2-4x-m^2-3m=0
a)chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi m
b)tìm giá trị của m để pt (1) có hai nghiệm là hai số nghịch đảo của nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét pt :
\(x^2-2\left(m-1\right)+2m-5=0\)
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)
\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m
b/ Phương trình cớ 2 nghiệm trái dấu
\(\Leftrightarrow2m-5< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
c/ Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)
\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)
1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb với mọi m
2, Vì pt có 2 nghiệm trái dấu
\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)
\(=\left(2m-3\right)^2+6\ge6\forall m\)
Dấu ''='' xảy ra khi m = 3/2
Vậy với m = 3/2 thì A đạt GTNN tại 6
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)
Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)
Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.
\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)
a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)
⇒ Phương trình có hai nghiệm phân biệt
b, Để phương trình có hai nghiệm cùng dương thì :
\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)
c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)
Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)
Kết luận ....
Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.
a) \(\Delta=\left(m-1\right)^2-4.\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\)
nên phương trình ( 1 ) luôn có hai nghiệm phân biệt
b) PT ( 1 ) có hai nghiệm trái dấu
\(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}4m^2+\left(m-3\right)^2\ge0\\-m^2+m-2< 0\end{cases}\Leftrightarrow\forall m}\)
a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)
\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )
Câu a: Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m
⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m
Câu b:
Để phương trình có 2 nghiệm nguyên thì \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)
a, \(\Delta'=b'^2-ac=\left(-2\right)^2-1.\left(-m^2-3m\right)=4+m^2+3m\)
Để pt (1) có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow m^2+3m+4>0\) (luôn đúng)
Vậy pt (1) luôn có 2 nghiệm phân biệt với mọi m
b, Theo vi ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-m^2-3m\end{matrix}\right.\)
Để 2 nghiệm là 2 số nghịch đảo của nhau \(\Leftrightarrow x_1x_2=1\)
\(\Rightarrow-m^2-3m=1\Leftrightarrow m^2+3m-1=0\Leftrightarrow\left[{}\begin{matrix}m=\frac{-3+\sqrt{13}}{2}\\m=\frac{-3-\sqrt{13}}{2}\end{matrix}\right.\)