K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

P = 3x/(x(x + 5)) > 0

<=> 3/(x + 5) > 0

<=> 3 = 0 (vô lý)

=> vô nghiệm

14 tháng 8 2019

5)

để \(\frac{5x-3}{x+1}\)là số nguyên

\(5x-3⋮x+1\)

\(x+1⋮x+1\)

\(\Rightarrow5\left(x+1\right)⋮x+1\)

\(5x-3-\left(5x-5\right)⋮x+1\)

\(-2⋮x+1\)

\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x+11-12-2
x0-21-3

Vậy \(x\in\left\{0;-2;1;-3\right\}\)

15 tháng 11 2017

3x+7=28

3x    =28-7

3x     =21

  x    =21:3

 x      =7

25 tháng 6 2023

\(\sqrt{x+7}\) có nghĩa \(\Leftrightarrow x+7\ge0\Leftrightarrow x\ge-7\)

\(\sqrt{x-5}\) có nghĩa \(\Leftrightarrow x-5\ge0\Leftrightarrow x\ge5\)

\(\sqrt{3-\dfrac{2}{3}x}\) có nghĩa \(\Leftrightarrow3-\dfrac{2}{3}x\ge0\Leftrightarrow-\dfrac{2}{3}x\ge-3\Leftrightarrow x\le\dfrac{9}{2}\)

\(\sqrt{5-3x}\) có nghĩa \(\Leftrightarrow5-3x\ge0\Leftrightarrow-3x\ge-5\Leftrightarrow x\le\dfrac{5}{3}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

NV
12 tháng 1 2022

1.

\(x^2+3x+5=\left(x+1\right)\left(x+2\right)+3\)

Tích 2 số tự nhiên liên tiếp chia 7 chỉ có các số dư 2, 5, 6 nên \(\left(x+1\right)\left(x+2\right)+3\) ko chia hết cho 7 với mọi x

2.

\(x^4+x^2+8=x^2\left(x^2+1\right)+8\)

Tích 2 tự nhiên liên tiếp chia 11 chỉ có các số dư 1, 2, 6, 8, 9 nên \(x^2\left(x^2+1\right)+8\) ko chia hết cho 11 với mọi x

12 tháng 1 2022

1.Ta có x^2 + 3x + 5 ⋮ 7 <=> x^2 - 4x + 5 - 7x ⋮ 7

<=> x^2 - 4x + 4 + 1 ⋮ 7 <=> (x-2)^2 + 1  ⋮ 7

<=> (x-2)^2 : 7 dư 6

Mà (x-2)^2 là số CP => (x-2)^2 : 7 dư 1,4,2

=> Vô lí. Vậy n ∈ ∅

2.Ta có x^4 + x^2 + 8 ⋮ 11 <=> x^4 + x^2 : 11 dư 3

<=> x^2(x^2+1) : 11 dư 3

Mà x^2(x^2+1) là 2 số nguyên dương liên tiếp

=> x^2(x^2+1) : 11 dư 2,6,1,9,8

=> Vô lí. Vậy n ∈ ∅

26 tháng 2 2023

`a)` P(x)= 2x³ + x² +5 -3x + 3x²- 2x³ - 4x² + 1

`P(x) = (2x^3 -2x^3) + (x^2 +3x^2 -4x^2)-3x +(1+5)`

`P(x) = -3x +6`

Vậy `P(x) = -3x +6`

b) cho `P(x) = 0`

`<=> -3x+6 =0`

`-3x =-6`

`=> x =2`

cho P(x) =1

`=> -3x +6 =1`

`<=> -3x =-5`

`x =5/3`

26 tháng 6 2023

ĐKXĐ: \(x\ne\pm3\)

a

Khi x = 1:

\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)

Khi x = 2:

\(A=\dfrac{3.2+2}{2-3}=-8\)

Khi x = \(\dfrac{5}{2}:\)

\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)

b

Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên

\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)

Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)

c

Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên

\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)

\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)

d

\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)

=> Để A, B cùng là số nguyên thì x = 4.