tam giác abc vuông tại a có đường cao AH. gọi m trung điểm BC. chứng minh AB^2.CH=AC^2.BH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
c: ΔHBA đồng dạng với ΔABC
=>BH/BA=HA/AC
=>BH*AC=BA*HA
=>BH*AC=BD/2*2*AH=BD*AM
=>BH/AM=BD/AC
=>ΔBHD đồng dạng với ΔAMC
=>HD/MC=BD/AC
=>HD*AC=MC*BD
d: góc AMC=góc MHC+góc HCM
góc AMC=góc BHD
=>góc BHD=góc MHC+góc HCM
=>90 độ+góc MHD=90 độ+góc HCM
=>góc MHD=góc HCM
mà góc MCH+góc HMC=90 độ
nê góc MHD+góc HMC=90 độ
=>MC vuông góc HD
a: Xet ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A có AH vuông góc BC
nên BA^2=BH*BC
\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)
\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE
Xét ΔCEB có KH//EB
nên KH/EB=CK/CE=KD/AE
mà AE=EB
nên KH=KD
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC và AC^2=CH*BC
=>AB^2/AC^2=BH/CH
b: S AHC=8,64
=>1/2*AH*HC=8,64
=>AH*HC=17,28
S AHB=15,36
=>1/2*AH*HB=15,36
=>AH*HB=30,72
mà AH*HC=17,28
nên AH*AH*HB*HC=30,72*17,28
=>AH^2*AH^2=30,72*17,28
=>AH^4=530,8416
=>\(AH=\sqrt[4]{530.8416}=4.8\left(cm\right)\)
A B C H
- Xét \(\Delta ABH\) và \(\Delta CBA\) có :
\(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{ABH}\left(chung\right)\end{matrix}\right.\)
=> \(\Delta ABH\) ~ \(\Delta CBA\) ( g - g )
=> \(\frac{AB}{AC}=\frac{AH}{AB}\)
=> \(AB^2=AC.AH\)
CMTT : \(AC^2=BC.HC\)
Ta có : \(BH.BC.HC=BH.BC.HC\) ( luôn đúng )
=> \(AB^2.CH=AC^2.BH\) ( đpcm )