K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

\(-2x^5-7x^4+9x^3=0\)

\(\Leftrightarrow-x^3\left(2x^2+7x-9\right)=0\)

\(\Leftrightarrow-x^3\left(2x^2-2x+9x-9\right)=0\)

\(\Leftrightarrow-x^3\left[2x\left(x-1\right)+9\left(x-1\right)\right]=0\)

\(\Leftrightarrow-x^3\left(x-1\right)\left(2x+9\right)=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc   \(x-1=0\)

hoặc   \(2x+9=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc   \(x=1\)

hoặc \(x=-\frac{9}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;1;-\frac{9}{2}\right\}\)

10 tháng 4 2016

vì P(x)=Q(x)

=> không có câu trả lời

15 tháng 10 2021
9 tháng 9 2017

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)

\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)

Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)

9 tháng 9 2017

Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)

hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)

\(\Leftrightarrow x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)

\(\Leftrightarrow x^2-9=0\)

=>x=3 hoặc x=-3

17 tháng 12 2023

a,  7\(x\).(2\(x\) + 10) = 0

        \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\){-5; 0}

          

         

17 tháng 12 2023

b, - 9\(x\) : (2\(x\) - 10) = 0

      - 9\(x\) = 0

           \(x\) = 0

c, (4 - \(x\)).(\(x\) + 3) = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}

d, (\(x\) + 2023).(\(x\) - 2024) = 0

    \(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2023; 2024}

17 tháng 12 2023

a, 7\(x\).(2\(x\) + 10) =0

    \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

     \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\) {-5; 0}

 

17 tháng 12 2023

b, -9\(x\) : (2\(x\) - 10) = 0

    9\(x\)                   = 0 

     \(x\)                    = 0 

c, (4 - \(x\)).(\(x\) + 3)  = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}

4 tháng 4 2018

vì x=0 không là nghiệm của pt => chia cả 2 vế cho x2≠0

2x2-7x+9-\(\dfrac{7}{x}\)+\(\dfrac{2}{x^2}\)=0

<=>\(\left(2x^2+\dfrac{2}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+9=0\)

<=>\(2\left(x^2+\dfrac{1}{x^2}\right)-7\left(x+\dfrac{1}{x}\right)+9=0\)

đặt \(x+\dfrac{1}{x}\)=y =>\(x^2+\dfrac{1}{x^2}=y^2-2\) ta đc

2(y2-2)-7y+9=0

<=> 2y2-4-7y+9=0

<=>2y2-7y+5=0

<=> 2y2-2y-5y+5=0

<=> (2y2-2y)-(5y-5)=0

<=> 2y(y-1)-5(y-1)=0

<=>(y-1)(2y-5)=0

<=>\(\left\{{}\begin{matrix}y-1=0\\2y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\y=\dfrac{5}{2}\end{matrix}\right.\)

Với y=1 ta có

\(x+\dfrac{1}{x}=1\) =>x2-x+1=0 (vô nghiệm)

Với y=5/2

\(x+\dfrac{1}{x}=\dfrac{5}{2}\) => x=2 và x=\(\dfrac{1}{2}\)

vậy pt có S=\(\left\{2;\dfrac{1}{2}\right\}\)

 

 

4 tháng 4 2018

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-2x^3-x^3-4x^3+2x^2+x^2+4x^2+2x^2-x-4x-2x+2=0\)

\(\Leftrightarrow\left(2x^4-2x^3+2x^2\right)-\left(x^3-x^2+x\right)-\left(4x^3-4x^2+4x\right)+\left(2x^2-2x+2\right)=0\)

\(\Leftrightarrow2x^2\left(2x^2-2x+2\right)-\dfrac{1}{2}x\left(2x^2-2x+2\right)-2x\left(2x^2-2x+2\right)+\left(2x^2-2x+2\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x^2-\dfrac{1}{2}x-2x+1\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left[x\left(x-\dfrac{1}{2}\right)-2\left(x-\dfrac{1}{2}\right)\right]=0\)

\(\Leftrightarrow\left(2x^2-2x+2\right)\left(x-\dfrac{1}{2}\right)\left(x-2\right)=0\)

Vì: \(2x^2-2x+2=\left(\sqrt{2}x-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}>0\forall x\)

Nên: \(\left[{}\begin{matrix}x-\dfrac{1}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Vậy..................

p/s: 1 cách khác :))

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg