Tìm m để đa thức x2 - (m + 1 )x+4 chia hết cho đa thức x - 1
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Để \(x^2+mx-8⋮x+1\)
\(\Leftrightarrow x^2+mx-8=\left(x+1\right).A\left(x\right)\)
Thay \(x=-1\)
\(\Leftrightarrow1-m-8=0\Leftrightarrow m=7\)
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
\(\dfrac{B\left(x\right)}{x^2+2x-5}=\dfrac{x^4-4x^3-19x^2+106x+m}{x^2+2x-5}\)
\(=\dfrac{x^4+2x^3-5x^2-6x^3-12x^2+30x-2x^2-4x+10+80x+m-10}{x^2+2x-5}\)
\(=x^2-6x-2+\dfrac{80x+m-10}{x^2+2x+5}\)
Để đây là phép chia hết thì 80x=-m+10
hay x=-m+10/80
a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
Lời giải:
Theo định lý Bê-du về phép chia đa thức, để $f(x)=x^2-(m+1)x+4$ chia hết cho $x-1$ thì $f(1)=0$
Hay $1^2-(m+1).1+4=0$
$\Leftrightarrow m=4$