Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)
=>a-10=0
=>a=10
b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)
=>2-a=0 và b-a+1=0
=>a=2; b=a-1=2-1=1
a, \(A=3x^3-2x^2+2\)
\(=3x^3+3x^2-x^2-x+x+1+1\)
\(=3x^2\left(x+1\right)-x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(3x^2-x+1\right)\left(x+1\right)+1\)
Vậy A : B được 3x^2-x+1 dư 1
b, Để \(A⋮B\Rightarrow1⋮\left(x+1\right)\)
x nguyên => x+1=1 hoặc x+1=(-1)
=>x=0 hoặc x=(-2)
Vậy ....
Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
-1 và 1 là hai nghiệm của đa thức \(x^2-1\)
Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)
Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)
Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)
Vậy a = -2, b = 1
Lời giải:
Khi \(f(x)=x^4+ax^2+b\) chia hết cho \(g(x)=x^2-3x+2\) thì ta có thể viết $f(x)$ dưới dạng:
\(f(x)=x^4+ax^2+b=(x^2-3x+2)Q(x)\) (trong đó $Q(x)$ là đa thức thương)
\(\Leftrightarrow x^4+ax^2+b=(x-1)(x-2)Q(x)\)
Thay \(x=1\Rightarrow 1+a+b=0(-1).Q(1)=0\Rightarrow a+b=-1\)
Thay \(x=2\Rightarrow 16+4a+b=1.0.Q(2)=0\Rightarrow 4a+b=-16\)
Từ hai điều trên suy ra \(a=-5, b=4\)
Bài 2:
Tách \(x^2-1=(x-1)(x+1)\)
Áp dụng định lý Bezout:
Số dư của \(f(x)=x^{10}+ax^3+b\) khi chia cho \(x-1\) là:
\(f(1)=1+a+b=2.1+1=3\)
\(\Rightarrow a+b=2(1)\)
Số dư của \(f(x)=x^{10}+ax^3+b\) khi chia cho \(x+1\) là:
\(f(-1)=1-a+b=2(-1)+1=-1\)
\(\Rightarrow -a+b=-2(2)\)
Từ \((1),(2)\Rightarrow \left\{\begin{matrix} a=2\\ b=0\end{matrix}\right.\)
a, Với m = 3 ta được :
<=> \(f\left(x\right)=2x^3+5x^2+5x+3\)
Ta có : \(f\left(x\right)⋮h\left(x\right)\)hay \(2x^3+5x^2+5x+3⋮x+1\)
2x^3 + 5x^2 + 5x + 3 x + 1 2x^2 + 3x + 2 2x^3 + 2x^2 3x^2 + 5x 3x^2 + 3x 2x + 3 2x + 2 1
b,
2x^3 + 5x^2 + 5x + m x + 1 2x^2 + 3x + 2 2x^3 + 2x^2 3x^2 + 5x 3x^2 + 3x 2x + m 2x + 2 m - 2
Để m - 2 = 0 <=> m = 2
Lời giải:
Theo định lý Bê-du về phép chia đa thức, để $f(x)=x^2-(m+1)x+4$ chia hết cho $x-1$ thì $f(1)=0$
Hay $1^2-(m+1).1+4=0$
$\Leftrightarrow m=4$