Cho S =1/n+3+1/n+4+....+1/n+2019 với N là stn
chứng minh rằng tổng ko phải là stn với mọi n
đố mọi người làm dc đề này lớp Mik ko ai làm dc mong các bạn giúp rất cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.
Ta có: 10p + 1 - p = 9p + 1
Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k
17p + 1 = 8p + 9p + 1 = 8p + 2k = 2.(4p + k) ⋮ 2
⇒ 17p + 1 là hợp số (đpcm)
Câu 1:
Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.
Nếu $p=3k+2$ thì:
$10p+1=10(3k+2)+1=30k+21\vdots 3$
Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)
$\Rightarrow p$ có dạng $3k+1$.
Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
(đpcm)
1.
\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)
\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ
\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)
\(\Rightarrow n=4b\left(b+1\right)\)
Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn
\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)
Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1
Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2
\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1
\(\Rightarrow n⋮3\)
\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau
Gọi (n4 + 3n2 + 1 ; n3 + 2n) = d (\(d\inℕ^∗\))
\(\hept{\begin{cases}n^4+3n^2+1⋮d\\n^3+2n⋮d\end{cases}}\Rightarrow\hept{\begin{cases}n^4+3n^2+1⋮d\\n\left(n^3+2n\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}n^4+3n^2+1⋮d\\n^4+2n^2⋮d\end{cases}}\)
=> (n4 + 3n2 + 1) - (n4 + 2n2) \(⋮\)d
=> n2 + 1 \(⋮\)d (1)
Lại có \(\hept{\begin{cases}n^2+1⋮d\\n^3+2n⋮d\end{cases}}\Rightarrow\hept{\begin{cases}n\left(n^2+1\right)⋮d\\n^3+2n⋮d\end{cases}}\Rightarrow\hept{\begin{cases}n^3+n⋮d\\n^3+2n⋮d\end{cases}}\Rightarrow\left(n^3+2n\right)-\left(n^3+n\right)⋮d\Rightarrow n⋮d\)
=> \(n^2⋮d\)(2)
Từ (1) (2) => n2 + 1 - n2 \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
=> (n4 + 3n2 + 1 ; n3 + 2n) = 1 (đpcm)
a,
+ nếu n \(⋮\) 2 \(\Rightarrow n\left(n+5\right)⋮2\)
+ nếu 2 chia 2 dư 1
=> n có dạng 2k+1
=> n(n+5) = (2k+1)(2k+6) = 2(2k+1)(k+3) \(⋮2\)
=> \(n\left(n+5\right)⋮2\forall n\)
vậy.....
b, \(A=4+4^2+4^3+...+4^{2019}\)
\(4A=4^2+4^3+4^4+...+4^{2020}\)
\(3A=4^{2020}-4\)
\(A=\frac{4^{2020}-4}{3}\)
vậy.......
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
hacker mới làm được
đang nghỉ covid mà bạn văn học bạn học trực tuyến đúng không ?