K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

A A A B B B C C C D D D M M M 1 2

Để so sánh \(\widehat{A_1}\)và \(\widehat{A_2}\),ta đưa chúng về một tam giác.Trên tia đối của tia MA,lấy điểm D sao cho MD = MA

Xét \(\Delta AMB\)và \(\Delta DMC\)có :

AM = DM(cmt)

\(\widehat{MAB}=\widehat{MDC}\)

MB = MC(vì M là trung điểm của BC)

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=> \(\widehat{A_1}=\widehat{D}\)(hai góc tương ứng)(1)

      \(AB=CD\)(hai cạnh tương ứng)

Ta có : AC > AB, AB = CD nên AC > CD

\(\Delta ACD\)có AC > CD nên \(\widehat{D}>\widehat{A_2}\)(2)

Từ (1) và (2) => \(\widehat{A_1}>\widehat{A_2}\)hay \(\widehat{MAC}< \widehat{BAM}\)

13 tháng 12 2020

a)

Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có 

MB=MC(M là trung điểm của BC)

AM=DM(gt)

Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)

\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

2: Sửa đề: AD=AC

a: Xét ΔACE vuông tại C và ΔADE vuông tại D có

AE chung

AC=AD

=>ΔACE=ΔADE

=>góc CAE=góc DAE

=>AE là phân giác của góc CAD

b: AC=AD

EC=ED

=>AE là trung trực của CD

1:

a: Xét ΔNAB và ΔNEM có

NA=NE

góc ANB=góc ENM

NB=NM

=>ΔNAB=ΔNEM

b: Xét ΔBAM có BA=BM

nên ΔBAM cân tại B

c: Xét ΔCAE có

CN là trung tuyến

CM=2/3CN

=>M là trọng tâm

24 tháng 3 2020

Xét \(\Delta\)ADB có DM là trung tuyến đồng thời là đường cao

=> \(\Delta\)ADB cân tại D

=> \(\widehat{BAD}=\widehat{ABD}\)hay \(\widehat{BAE}=\widehat{ABC}\)

Xét \(\Delta ABC\)và \(\Delta BAE\)có: 

AB chung

\(\widehat{ABC}=\widehat{BAE}\left(cmt\right)\)

BC=AE

=> \(\Delta ABC=\Delta BAE\left(cgc\right)\)

a: Xét ΔAMB và ΔNMC có

MA=MN

\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔNMC

b: ta có: ΔAMB=ΔNMC

=>\(\widehat{MAB}=\widehat{MNC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//NC

Ta có: AB//NC

CD\(\perp\)AB

Do đó: CD\(\perp\)CN

=>\(\widehat{DCN}=90^0\)

c: Xét ΔBAI có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAI cân tại B

=>BA=BI

mà BA=CN

nên BI=CN

Bài 1: 

Xét ΔBMC có 

N là trung điểm của BM

I là trung điểm của BC

Do đó: NI là đường trung bình của ΔBMC

Suy ra: NI//MK

Xét ΔANI có 

M là trung điểm của AN

MK//NI

Do đó: K là trung điểm của AI

5 tháng 10 2021

em cảm ơn ạ

AH
Akai Haruma
Giáo viên
30 tháng 3 2021

Lời giải:

Kẻ $MT\perp AC$

Xét tam giác $ABH$ và $AMH$ có:

$\widehat{BAH}=\widehat{MAH}$

$\widehat{AHB}=\widehat{AHM}$

$AH$ chung

$\Rightarrow \triangle ABH=\triangle AMH$ (c.g.c)

$\Rightarrow BH=HM$

Tương tự ta cũng cm được: $\triangle AMH=\triangle AMT$ (ch-gn)

$\Rightarrow HM=MT$

Do đó: $BH=HM=MT (=\frac{1}{2}BM$)

Mà $BM=MC$ nên $MT=\frac{1}{2}MC$

Xét tam giác $MTC$ vuông tại $T$ có $MT=\frac{1}{2}MC$ nên $\widehat{C}=30^0$

Xét tam giác $AHC$ vuông tại $H$ có $\widehat{C}=30^0$ nên $\widehat{HAC}=60^0$

Mà $\widehat{HAC}=\frac{2}{3}\widehat{BAC}$ nên $\widehat{BAC}=90^0$

Còn lại $\widehat{B}=60^0$

 

AH
Akai Haruma
Giáo viên
30 tháng 3 2021

Hình vẽ:
undefined

a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có

AB=AE

AC chung

=>ΔABC=ΔAEC

b: Xet ΔCEB có

CA,BH là trung tuyến
CA cắt BH tại M

=>M là trọng tâm

=>CM=2/3*12=8cm

c: Xét ΔCBE có

A là trung điểm của BE

AK//CE
=>K la trung điểm của BC

=>E,M,K thẳng hàng