Cho tam giác ABC cân tại A. Gọi D là trung điểm cạnh BC. Qua A vẽ đường thẳng d song song với BC. Chứng minh rằng:
a) t/giác ABD = t/giác ACD
b) AD là tia phân giác của góc BAC.
c) AD vuông góc với d.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là tia phân giác của góc BAC
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
=>AD⊥BC
mà d//BC
nên AD⊥d
a) Xét ΔΔABD và ΔΔACD có:
AB = AC (gt)
AD: cạnh chung
BD = CD (D là trung điểm của BC)
⇒Δ⇒ΔABD = ΔΔACD (c.c.c)
b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒\(\widehat{BAD}\)=\(\widehat{CAD}\) (2gocs tương ứng )
⇒ AD là tia phân giác của \(\widehat{BAC}\)
c) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )
mà \(\widehat{ADB}\) + \(\widehat{ADC}\)=18001800( 2 góc kề bù )
⇒\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900
⇒ AD ⊥ BC
Lại có: d // BC (gt) ⇒ AD ⊥ d
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường phân giác
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
=>AD⊥BC
hay AD⊥d
a) Xét \(\Delta\)ABD và \(\Delta\)ACD có:
AB = AC (gt)
AD: cạnh chung
BD = CD (D là trung điểm của BC)
\(\Rightarrow\Delta\)ABD = \(\Delta\)ACD (c.c.c)
b) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)
\(\Rightarrow\widehat{BAD}\) = \(\widehat{CAD}\) (2 góc tương ứng)
\(\Rightarrow\) AD là tia phân giác của \(\widehat{BAC}\)
c) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)
\(\Rightarrow\widehat{ADB}\) =\(\widehat{ADC}\) (2 góc tương ứng)
mà \(\widehat{ADB}\) + \(\widehat{ADC}\) = 18001800 (2 góc kề bù)
\(\Rightarrow\widehat{ADB}\) = \(\widehat{ADC}\) = 900900
\(\Rightarrow\) AD \(\perp\) BC
Lại có: d // BC (gt) \(\Rightarrow\) AD \(\perp\) d
ĐS:......................
#Châu's ngốc
a) xét∆ABD và∆ACD có:
BD=CD
AB=AC
Chung AD
=) ∆ABD=∆ACD( c-g-c )
b)do AB=AC =) ∆ABC cân tai A .
Lại có: BD=CD=)AD là trung tuyến∆ABC .
Suy ra AD là phân giác góc BAC
c) do trong∆ cân thì đường trung tuyến vừa là phân giác vừa là đường cao vừa là trung trực nên AD vuông góc với BC
Ta có: AD vuông góc với BC
BC//d
Suy ra AD vuông góc với d ( từ vuông góc đến // )
Vậy........
a/ \(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)
BD = CD (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ABD\)= \(\Delta ACD\)(c - c - c) (đpcm)
b/ Ta có \(\Delta ABD\)= \(\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
=> AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
c/ Ta có \(\Delta ABD\)= \(\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)
Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)
=> \(2\widehat{BDA}\)= 180o
=> \(\widehat{BDA}\)= 90o
=> AD \(\perp\)BC
Mà BC // d (gt) => AD \(\perp\)d (đpcm)
a. MA=MD (vì D đx A qua M) và MB=MC nên ABDC là hbh
Mà AB=AC nên ABDC là hthoi
b. Ta có AM là đtb tam giác EBC nên EC=2AM=AD
Mà FB=AD nên FB=EC
Mà FB//CE nên BCEF là hbh
Mà \(\widehat{FBC}=90^0\) nên BCEF là hcn
xét∆ABD và∆ACD có:
BD=CD
AB=AC
Chung AD
=) ∆ABD=∆ACD( c-g-c )
b)do AB=AC =) ∆ABC cân tai A .
Lại có: BD=CD=)AD là trung tuyến∆ABC .
Suy ra AD là phân giác góc BAC
c) do trong∆ cân thì đường trung tuyến vừa là phân giác vừa là đường cao vừa là trung trực nên AD vuông góc với BC
=>AD vuông góc với BC
mà BC//d
=> AD vuông góc với d
đáng ra phỉa là c-c-c chứ