K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

mình làm cho câu dưới nha

\(x+y+xy+2=x^2+y^2\)

\(=>x^2+y^2-x-y-xy=2\)

=>\(2x^2+2y^2-2x-2y-2xy=4\\\)( chỗ này nhân mõi zế zs 2 á)

=>\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=4\)

ta lại có\(4=0+1+3=tgtựra\)

mình nghĩ thế

DD
8 tháng 1 2021

\(\left(x+1\right)\left(xy-1\right)^2=3=1.3=3.1\)

có \(\left(xy-1\right)^2\ge0\)nên \(\left(xy-1\right)^2=1\Rightarrow x+1=3\Leftrightarrow x=2\)

\(\left(xy-1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2y-1=1\\2y-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}}\)

Vậy có các nghiệm \(\left(x,y\right)=\left\{\left(2,1\right),\left(2,0\right)\right\}\)

24 tháng 4 2020

\(x\left(x-\frac{1}{3}\right)< 0\)

Để \(x\left(x-\frac{1}{3}\right)< 0\)thì x và \(x-\frac{1}{3}\)trái dấu nhau

Thấy \(x>x-\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}x>0\\x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}\Leftrightarrow}0< x< \frac{1}{3}}\)

AH
Akai Haruma
Giáo viên
11 tháng 1 2023

Lời giải:

$x,y$ tự nhiên

$(2x+1)(y^2-5)=12$.

$\Rightarrow 2x+1$ là ước của $12$

$x\in\mathbb{N}$ kéo theo $2x+1$ là số tự nhiên lẻ nên $2x+1$ là ước tự nhiên lẻ của $12$

$\Rightarrow 2x+1\in\left\{1; 3\right\}$

Nếu $2x+1=1$:

$y^2-5=\frac{12}{1}=12\Rightarrow y^2=17$ (không thỏa mãn do $y$ tự nhiên)

Nếu $2x+1=3$

$\Rightarrow x=1$

$y^2-5=\frac{12}{2x+1}=4\Rightarrow y^2=9=3^2=(-3)^2$

Do $y$ tự nhiên nên $y=3$

Vậy $(x,y)=(1,3)$

13 tháng 11 2021

= x^3 + 2^3

= x^3 + 8

13 tháng 11 2021

\(=x^3+8\)

25 tháng 7

a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)

    (\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)

     - \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)

     \(x\)   = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))

     \(x=\) - \(\dfrac{1}{2}\)

Vậy \(x=-\dfrac{1}{2}\) 

    

25 tháng 7

b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)

           \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)

          \(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)

         3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)

         3\(x\)   - 3,7 = - \(\dfrac{19}{2}\)

         3\(x\)         = - \(\dfrac{19}{2}\) + 3,7

          3\(x\)        = - \(\dfrac{29}{5}\)

           \(x\)         = - \(\dfrac{29}{5}\) : 3

           \(x\)        = - \(\dfrac{29}{15}\)

Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\) 

            

30 tháng 10 2019

Câu hỏi của Nguyễn Minh Trang - Toán lớp 7 - Học toán với OnlineMath

Tham khảo