Giải phương trình : \(4x^2=3x+4\)
Tìm x,y nguyên : \(x+y+xy+2=x^2+y^2\)
Giải giúp mik vs ak !! mik cần gấp , bài nào cũng đc ak !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(xy-1\right)^2=3=1.3=3.1\)
có \(\left(xy-1\right)^2\ge0\)nên \(\left(xy-1\right)^2=1\Rightarrow x+1=3\Leftrightarrow x=2\)
\(\left(xy-1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2y-1=1\\2y-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}}\)
Vậy có các nghiệm \(\left(x,y\right)=\left\{\left(2,1\right),\left(2,0\right)\right\}\)
\(x\left(x-\frac{1}{3}\right)< 0\)
Để \(x\left(x-\frac{1}{3}\right)< 0\)thì x và \(x-\frac{1}{3}\)trái dấu nhau
Thấy \(x>x-\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}x>0\\x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}\Leftrightarrow}0< x< \frac{1}{3}}\)
Lời giải:
$x,y$ tự nhiên
$(2x+1)(y^2-5)=12$.
$\Rightarrow 2x+1$ là ước của $12$
$x\in\mathbb{N}$ kéo theo $2x+1$ là số tự nhiên lẻ nên $2x+1$ là ước tự nhiên lẻ của $12$
$\Rightarrow 2x+1\in\left\{1; 3\right\}$
Nếu $2x+1=1$:
$y^2-5=\frac{12}{1}=12\Rightarrow y^2=17$ (không thỏa mãn do $y$ tự nhiên)
Nếu $2x+1=3$
$\Rightarrow x=1$
$y^2-5=\frac{12}{2x+1}=4\Rightarrow y^2=9=3^2=(-3)^2$
Do $y$ tự nhiên nên $y=3$
Vậy $(x,y)=(1,3)$
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
mình làm cho câu dưới nha
\(x+y+xy+2=x^2+y^2\)
\(=>x^2+y^2-x-y-xy=2\)
=>\(2x^2+2y^2-2x-2y-2xy=4\\\)( chỗ này nhân mõi zế zs 2 á)
=>\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=4\)
ta lại có\(4=0+1+3=tgtựra\)
mình nghĩ thế