K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

a) ĐKXĐ: \(x\ne0;x\ne5\)

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x^2-5+4x\right)}{2x\left(x+5\right)}\)

\(P=\frac{x^2-5x+4}{2\left(x+5\right)}\)

\(P=\frac{\left(x-1\right)\left(x+5\right)}{2\left(x+5\right)}\)

\(P=\frac{x-1}{2}\)

c) +) P = 0

\(\frac{x-1}{2}=0\)

<=> x - 1 = 0

<=> x = 1

+) P = 1/4 

\(\frac{x-1}{2}=\frac{1}{4}\)

<=> 4(x - 1) = 2.1

<=> 4x - 4 = 2

<=> 4x = 2 + 4

<=> 4x = 6

<=> x = 6/4 = 3/2

AH
Akai Haruma
Giáo viên
25 tháng 11 2020

Lời giải:

a) ĐKXĐ:

\(\left\{\begin{matrix} 2x+10\neq 0\\ x\neq 0\\ 2x(x+5)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq -5\\ x\neq 0\end{matrix}\right.\)

b)

\(B=\frac{x(x^2+2x)}{x(2x+10)}+\frac{(2x+10)(x-5)}{x(2x+10)}+\frac{50-5x}{x(2x+10)}\)

\(=\frac{x^3+2x^2+2(x^2-25)+50-5x}{x(2x+10)}=\frac{x^3+4x^2-5x}{2x(x+5)}=\frac{x^2+4x-5}{2(x+5)}=\frac{(x-1)(x+5)}{2(x+5)}=\frac{x-1}{2}\)

Để $B=0\Leftrightarrow \frac{x-1}{2}=0\Leftrightarrow x=1$ (thỏa mãn)

Để $B=\frac{1}{4}\Leftrightarrow \frac{x-1}{2}=\frac{1}{4}$

$\Leftrightarrow x-1=\frac{1}{2}\Leftrightarrow x=\frac{3}{2}$ (thỏa mãn)

17 tháng 8 2020

Lời giải:

a) ĐKXĐ:

\(\left\{\begin{matrix} 2x+10\neq 0\\ x\neq 0\\ 2x(x+5)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq -5\\ x\neq 0\end{matrix}\right.\)

b)

\(B=\frac{x(x^2+2x)}{x(2x+10)}+\frac{(2x+10)(x-5)}{x(2x+10)}+\frac{50-5x}{x(2x+10)}\)

\(=\frac{x^3+2x^2+2(x^2-25)+50-5x}{x(2x+10)}=\frac{x^3+4x^2-5x}{2x(x+5)}=\frac{x^2+4x-5}{2(x+5)}=\frac{(x-1)(x+5)}{2(x+5)}=\frac{x-1}{2}\)

Để $B=0\Leftrightarrow \frac{x-1}{2}=0\Leftrightarrow x=1$ (thỏa mãn)

Để $B=\frac{1}{4}\Leftrightarrow \frac{x-1}{2}=\frac{1}{4}$

$\Leftrightarrow x-1=\frac{1}{2}\Leftrightarrow x=\frac{3}{2}$ (thỏa mãn)

29 tháng 3 2020

Bài 2 :

a, Ta có : \(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

=> \(A=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

=> \(A=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x-5\right)\left(x+5\right)}\)

=> \(A=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)

b, - Thay A = -3 ta được phương trình \(\frac{1}{x+5}=-3\)

=> \(-3\left(x+5\right)=1\)

=> \(-3x-15=1\)

=> \(-3x=16\)

=> \(x=-\frac{16}{3}\)

- Thay x = \(-\frac{16}{3}\)vào phương trình trên ta được :

\(9.\left(-\frac{16}{3}\right)^2-42.\left(-\frac{16}{3}\right)+49=529\)

25 tháng 12 2017

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
a) ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=0\Leftrightarrow x^3+4x^2-5x=0\)
\(\Leftrightarrow\)x=0 ( ko tm đkxđ) hoặc x=1(tm đkxđ) hoặc x=-5(ktmdkxd)=> x=1
c)\(P=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
P>0 => x>1
P<0=> x<1
Chúc bạn học tốt :)

a,Tìm ĐKXĐ

\(2x+10\ne0\Rightarrow2\left(x+5\right)\ne0\Rightarrow x\ne-5\)

\(x\ne0\)

\(2x\left(x+5\right)\ne0\Rightarrow x\ne0;x\ne-5\)

29 tháng 6 2016

c.ơn bạn =))

19 tháng 7 2016

a) ĐKXĐ: \(\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\begin{cases}x\ne0\\x\ne-5\end{cases}\)

b)\(A=\frac{x^2+2x}{2x+10}+\frac{x+5}{x}-\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2.\left(x+5\right)}+\frac{x+5}{x}-\frac{50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^2+2x}{2x.\left(x+5\right)}+\frac{2\left(x+5\right)^2}{2x\left(x+5\right)}-\frac{50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^2+2x+2x^2+20x+50-50+5x}{2x\left(x+5\right)}=\frac{3x^2+27x}{2x\left(x+5\right)}=\frac{3x.\left(x+9\right)}{2x\left(x+5\right)}=\frac{3x+27}{2x+10}\)

c)Để A=1 thì: \(\frac{3x+27}{2x+10}=1\Rightarrow3x+27=2x+10\Leftrightarrow x=-17\)(nhận)

Vậy x=-17 thì A=1

19 tháng 7 2016

Mình chưa hiểu bước 3 của câu b

 

31 tháng 10 2019

a) \(P=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)

\(P=\frac{x}{2\left(x-1\right)}+\frac{x^2+1}{2\left(1-x^2\right)}\)

\(P=\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x^2-1\right)}\)

\(P=\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

\(P=\frac{x\left(x+1\right)-x^2-1}{2\left(x-1\right)\left(x+1\right)}\)

\(P=\frac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}\)

\(P=\frac{x-1}{2\left(x-1\right)\left(x+1\right)}=\frac{1}{2\left(x+1\right)}\)

31 tháng 10 2019

b) \(Q=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(Q=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(Q=\frac{x^2\left(x+2\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}\)

\(Q=\frac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)

\(Q=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(Q=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(Q=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x^2+4x-5}{2\left(x+5\right)}\)

14 tháng 12 2018

\(A=\frac{\left(x^2+2x\right)x+\left(x-5\right)2\left(x+5\right)+20-5x}{2x\left(x+5\right)}\)

\(A=\frac{x^3+2x^2+2x^2-50+20-5x}{2x\left(x+5\right)}\)

\(A=\frac{x^3+4x^2-5x-30}{2x\left(x+5\right)}\)

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

a) ĐKXĐ: \(x\ne-5;x\ne0\)

b) Rút gọn A:

\(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\\ =\frac{x.\left(x^2+2x\right)}{2x.\left(x+5\right)}+\frac{\left(x-5\right).2.\left(x+5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\\ =\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\\ =\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x.\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x^2+4x-5}{2.\left(x+5\right)}\)

Để A=1:

\(\Leftrightarrow\frac{x^2+4x-5}{2\left(x+5\right)}=1\\ \Leftrightarrow x^2+4x-5=2x+10\\ \Leftrightarrow x^2+4x-2x-5-10=0\\ \Leftrightarrow x^2+2x-15=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-5\left(l\right)\end{matrix}\right.\)

=> Để A=1 => x=3