tìm a và b sao cho 2 đa thức f(x)=4x^3-3x^2+2x+2a+3b và g(x)=5x^4-4x^3+3x^2-2x-3a+2b cùng chia hết cho đa thức (x-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a(x)=x^3+3x^2+5x-18
b(x)=-x^3-3x^2+2x-2
b: m(x)=a(x)+b(x)
=x^3+3x^2+5x-18-x^3-3x^2+2x-2
=7x-20
c: m(x)=0
=>7x-20=0
=>x=20/7
a) Ta có:
\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)
\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)
\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)
a) \(A\left(x\right)=-4x^5-x^3+4x^2+5x+7+4x^5-6x^2\)
\(=\left(-4x^5+4x^5\right)+\left(-x^3\right)+\left(4x^2-6x^2\right)+5x+7\)
\(=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)
\(B\left(x\right)=-3x^4-4x^3+10x^2-8x+5x^3-7-8x\)
\(=-3x^4+\left(-4x^3+5x^3\right)+10x^2+\left[-8x+\left(-8x\right)\right]+\left(-7\right)\)
\(=-3x^4+x^3+10x^2+\left(-16x\right)+\left(-7\right)\)
b) \(A\left(x\right)=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)
\(B\left(x\right)=x^3+10x^2+\left(-16x\right)+\left(-7\right)+\left(-3x^4\right)\)
\(P\left(x\right)=A\left(x\right)+B\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)\)
\(Q\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-2x^3\right)+\left(-12x^2\right)+21x+14\)
c) Đặt \(P\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)=0\)
Thay x=-1 vào đa thức trên, ta có: \(8.\left(-1\right)^2+\left[-11.\left(-1\right)\right]+\left[-3.\left(-1\right)^4\right]=0\)
\(\Rightarrow8+11+\left(-3\right)=0\Rightarrow16=0\)(vô lí)
Vậy -1 không là nghiệm của đa thức P(x)
\(a,P\left(x\right)=2x^3-3x+7-x=2x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)
\(M\left(x\right)=2x^3-4x+7+\left(-5x\right)^3-x^2+4x-5=-3x^3-x^2+2\)
\(N\left(x\right)=2x^3-4x+7-\left(-5x\right)^3+x^2-4x+5=7x^3+x^2-8x+12\)
b,\(M\left(x\right)=-3x^3-x^2+2=0\)
Nghiệm xấu lắm bạn
Áp dụng định lý Bezout ta có:
f(x) chia hết cho x-3 \(\Rightarrow f\left(3\right)=0\)
\(\Leftrightarrow2a+3b=-87\left(1\right)\)
g(x) chia hết cho x-3 \(\Rightarrow g\left(3\right)=0\)
\(\Leftrightarrow-3a+2b=-318\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2a+3b=-87\\-3a+2b=-318\end{cases}\Leftrightarrow}\hept{\begin{cases}a=60\\b=-69\end{cases}}\)
Vậy ...