K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
5 tháng 6 2019

Đặt \(f\left(x\right)=ax^{3\: }+bx^2+c\)

Gọi g(x), h(x) lần lượt là thương khi chia đa thức f(x) cho đa thức x-2

và đa thức \(x^2-1\)

+ \(f\left(x\right)=\left(x-2\right)\cdot g\left(x\right)\) (1)

\(f\left(x\right)=\left(x^2-1\right)\cdot h\left(x\right)+2x+5\) (2)

Thay x = 2 vào (1) ta có :

\(f\left(2\right)=\left(2-2\right)\cdot g\left(x\right)=0\)

\(\Rightarrow8a+4b+c=0\)

+ Lần lượt thay \(x=1\) và x = -1 vào (2) ta có :

\(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c=2\cdot1+5=7\\-a+b+c=3\end{matrix}\right.\)

\(\Rightarrow2a=4\Rightarrow a=2\)( TM )

\(\Rightarrow\left\{{}\begin{matrix}4b+c=-16\\b+c=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=-7\\c=12\end{matrix}\right.\) ( TM )

1 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

Rút gọn biểu thức;

\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)

\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)

Tìm a để đa thức.. Bạn chia cột dọ thì da

1 tháng 10 2016

\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)

30 tháng 12 2015

bằng 15 bạn ơi. chắc chắn 100% đúng tick cho mình nha. thanks

27 tháng 8 2020

Đặt f(x) = 3x3 + x2 + x - a + 1

Theo định lý Bơ-du, số dư khi chia f(x) cho x - 3 bằng f(3)

Ta có: f(3) = 3. 33 + 32 + 3 - a + 1 = 94 - a

Để (3x3 + x2 + x - a + 1) ⋮ (x - 3) thì f(3) = 0

=> 94 - a = 0 => a = 94

Vậy với a = 94 thì (3x3 + x2 + x - a + 1) ⋮ (x - 3)

12 tháng 5 2016

đặt A=x3+y3+z3+kxyz : (x+y+z) ta được

A=(x+y+z).[x2+y2+z2-xy-xz-yz-yz(k+2)]-yz(x+z)(k+3)

để phép chia ko dư thì

-yz(x+z)(k+3)=0 (với mọi x,y,z)

do đó k+3=0 <=>k=-3

12 tháng 5 2016

thằng thứ nhất làm sai rồi

29 tháng 12 2017

B1 :

a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 =  100^2+100^2 = 20000

b, = (2x^2+16x+32)-2y^2

   = 2.(x+4)^2-2y^2

   = 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)

c, <=> (x^2-3x)+(2x-6) = 0

<=> (x-3).(x+2) = 0

<=> x-3=0 hoặc x+2=0

<=> x=3 hoặc x=-2

B2 :

P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x

k mk nha

29 tháng 12 2017

Bai 1

a)B=(x+1)2+(y-2)2

     Voi x=99,y=102

=>B= 1002+1002

       =20000

b)\(2x^2-2y^2+16x+32\)

=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)

=\(2\left[\left(x+4\right)^2-y^2\right]\)

=2(x-y+4)(x+y+4)

c)\(x^2-3x+2x-6=0\)

=>x(x-3)+2(x-3)=0

=>(x-3)(x+2)=0

=>x=-2;3

Bai 2

\(P=\frac{9-x^2}{x^2-3x}\)

    =\(-\frac{x^2-9}{x\left(x-3\right)}\)

   =\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)

=\(\frac{-x-3}{x}\)