Cho tam giác ABC vuông cân (A=90 độ) và một đường thẳng d bất kì đi qua A. Lấy E, F là các hình chiếu của B và C trên d.
a) CM: CF bằng hình chiếu của AB trên d.
b) Tìm điều kiện của đường thẳng d để các hình chiếu của AB và AC trên d trùng nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:
Xét trường hợp \(\Delta\)ABC nhọn và ^MBC > ^MCA (các trường hợp khác chứng minh tương tự)
Khi đó D thuộc tia đối của tia BA, E và F tương ứng nằm trên cạnh BC, CA.
Vì các tứ giác MDBE, ABMC và MCFE nội tiếp nên ^MED = ^MBD = ^ACM = 180o - ^MEM
=> ^MED + ^MEF = 180o <=> ^DEF = 180o.
Vậ D, E, F thẳng hàng (đpcm)
P/s: Bài toán trên theo mình nhớ không lầm thì là đường thẳng sim sơn
a: Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
b: Để AEDF là hình thang vuông thì góc A=90 độ