K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF

b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và  F A K ^ = F C A ^ = 45 0 )

=> A F H F = C F A F =>  A F 2 = K F . C F

c, S A E F = 93 2 c m 2

d, Ta có: AE.AJ=AF.AJ=AD.FJ

=>  A E . A J F J = AD không đổi

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
18 tháng 12 2018

a, Kẻ OM ⊥ CD

Gọi K = OD ∩ d => ∆COK = ∆COD

=> OK = OD => OM = OA = R => CD là tiếp tuyến

b, AC+BD=CM+DM=CD ≥ AB

Do đó min (AC+BD)=AB

<=> CD//AB => ABCD là hình chữ nhật <=> AC = AO

c, AC.BD = MC.MD =   O M 2 =  4 a 2

=>  1 O C 2 + 1 O D 2 = 1 4 a 2

d, Từ tính chất hai giao tuyến => MN//BD => MNAB hay MHAB;

AC//BD; MN//BD; NH//BD

=>  M N B D = N H B D => MN = NH

26 tháng 4 2018

a, Ta có:  E C A ^ + O C A ^ = 90 0 và A C H ^ + O A C ^ = 90 0

mà  O A C ^ = O C A ^  (do tam giác AOC cân tại O)

Suy ra E C A ^ = A C H ^

Khi đó  E A C ^ = H A C ^  (cùng lần lượt phụ với E C A ^ và  A C H ^ ), ta có đpcm

b, Chứng minh tương tự  suy ra BC là phân giác của  F B H ^

Từ đó, chứng minh được BC vuông góc HF (1)

Tam giác ABC có trung tuyến OC = 1 2 AB. Suy ra tam giác ABC vuông tại C , tức là BC vuông góc với AC (2)

Từ (1),(2) suy ra đpcm

c, Ta có : AE+BF =2OC=2R không đổi

d, Ta có   A E . B F ≤ A E + B F 2 4 = R 2

suy ra AE.BF lớn nhất =  R 2 óAE=BF=R

Điều này xẩy ra khi C là điểm chính giữa cung AB

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy