Cho hình thang ABCD (AB // CD, AB < CD). Trên cạnh AD lấy điểm I, trên cạnh BC lấy điểm K sao cho IK // CD. IK cắt đường chéo AC tại E.
Chứng minh AI/AD=AE/AC
Chứng minh AI/AD=BK/BC
Chứng minh AE/AC=BK/BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a) Xét tam giác vuông ECA và EDA có:
Cạnh EA chung
CA = DA (gt)
\(\Rightarrow\Delta ECA=\Delta EDA\) (Cạnh huyền, cạnh góc vuông)
\(\Rightarrow\widehat{CAE}=\widehat{DAE}\) (Hai cạnh tương ứng)
Hya AE là phân giác góc CAB.
b) Theo câu a, \(\Delta ECA=\Delta EDA\Rightarrow EC=ED\)
Ta có EC = ED; AC = AD nên AE là trung trực của CD.
c) Kẻ CH vuông góc AB.
Ta luôn có D nằm giữa B và H nên HD < HB
Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)
d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.
Vậy G là trọng tâm hay CK cũng có trung tuyến.
Vậy K là trung điểm BD.