Cho tam giác ABC vuông tại A. Điểm M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Chứng minh rằng:
1/ ∆AMC = ∆DMB.
2/ AC = BD.
3/ AB vuông góc với BD.
4/ AM = ½ BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Chứng minh tam giác AMC = tam giác DMB?
Xét tam giác AMC và tam giác DMB có:
- Góc BMD = góc AMC (đối đỉnh)
-BM = MC (gt)
-MA = MD (gt)
=> Tam giác AMC = tam giác DMB(g.c.g)
b)Chứng minh AC = BD?
Ta có: tam giác AMC = tam giác DMB (cmt)
=>BD=AC
c)Chứng minh AB vuông góc với BD?
Xét tam giác AMC và tam giác DMB có:
-Góc DMB = góc ABC (so le trong)
=>BD//AC
Mà AB vuông góc với AC
=> AB vuông góc với BD
d) Chứng minh AM=1/2 BC?
Xát tam giác ABC vuông tại A có:
M là trung điểm của BC(gt)
=>AM là đường trung tuyến
=>AM=1/2 BC (tính chất đường trung tuyền trong 1 tam giác vuông)
a: Xét ΔAMC và ΔDMB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
=>AB vuông góc BD
c: ΔABC vuông tại A có AM là trung tuyến
nên AM=1/2BC
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AC=BD
b: Ta có: ABDC là hình chữ nhật
nên \(\widehat{ABD}=90^0\)
c: ta có:ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2