Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Chứng minh tam giác AMC = tam giác DMB?
Xét tam giác AMC và tam giác DMB có:
- Góc BMD = góc AMC (đối đỉnh)
-BM = MC (gt)
-MA = MD (gt)
=> Tam giác AMC = tam giác DMB(g.c.g)
b)Chứng minh AC = BD?
Ta có: tam giác AMC = tam giác DMB (cmt)
=>BD=AC
c)Chứng minh AB vuông góc với BD?
Xét tam giác AMC và tam giác DMB có:
-Góc DMB = góc ABC (so le trong)
=>BD//AC
Mà AB vuông góc với AC
=> AB vuông góc với BD
d) Chứng minh AM=1/2 BC?
Xát tam giác ABC vuông tại A có:
M là trung điểm của BC(gt)
=>AM là đường trung tuyến
=>AM=1/2 BC (tính chất đường trung tuyền trong 1 tam giác vuông)
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
A B C M D
a, Xét \(\Delta AMC\) và \(\Delta DMB\) có:
AM = MD ( gt )
\(\widehat{BMD}=\widehat{AMC}\)( hai góc đối đỉnh )
BM = CM ( vì AM là trung tuyến )
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
b,\(\Delta AMC=\Delta DMB\left(cmt\right)\Rightarrow\widehat{MBD}=\widehat{C}\)
Xét \(\Delta ABC\) có \(\widehat{A}=90^o\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)(định lý )
mà \(\widehat{MBD}=\widehat{C}\Rightarrow\widehat{ABC}+\widehat{MBD}=90^o\)
hay \(\widehat{ABD}=90^0\)
c,\(\Delta AMC=\Delta DMB\left(cmt\right)\Rightarrow BD=AC\)
Xét \(\Delta ABC\) và \(\Delta BAD\) có:
AB cạnh chung
\(\widehat{ABD}=\widehat{BAC}=90^o\)
BD = AC ( cmt )
\(\Rightarrow\Delta ABC=\Delta BAD\left(c.g.c\right)\)
\(\Rightarrow BC=AD\)
Vì AM = MD => \(AM=\frac{1}{2}AD\)
mà BC = AD ( cmt )
\(\Rightarrow AM=\frac{1}{2}BC\)
Ta có hình vẽ sau:
A B C D M 1 2
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)