cm 1-1/2^2-1/3^2-.....-1/2006^2>1/2006
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức là A ta có:
\(A=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)}{1+\left(1+\frac{2005}{2}\right)+\left(1+\frac{2004}{3}\right)+...+\left(1+\frac{1}{2006}\right)}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{1+\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{2007.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}+\frac{1}{2007}\right)}\)
\(\Rightarrow A=\frac{2006}{2007}\)
Ta có: \(C=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)
\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{1+\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)}\)
\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}}\)
\(=\dfrac{2006}{2007}\)
- Đặt \(A=1-\frac{1}{2^2}-\frac{1}{3^2}-...-\frac{1}{2006^2}\)
- Ta có: \(1=1\)
\(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
\(................\)
\(\frac{1}{2006^2}>\frac{1}{2006.2007}\)
\(\Rightarrow A>1-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{2006.2007}\)
\(\Leftrightarrow A>1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)-...-\left(\frac{1}{2006}-\frac{1}{2007}\right)\)
\(\Leftrightarrow A>1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-...-\frac{1}{2006}+\frac{1}{2007}\)
\(\Leftrightarrow A>1+\frac{1}{2007}=\frac{2008}{2007}\)mà \(\frac{2008}{2007}>1>\frac{1}{2006}\)
\(\Rightarrow A>\frac{1}{2006} \left(ĐPCM\right)\)
^_^ Chúc bạn hok tốt ^_^