Số sau là số chính phương hay không:
A=33+35+...+32015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
Lời giải:
Ta thấy
$3^2\vdots 9$
$3^3=3^2.3\vdots 9$
......
$3^{20}=3^2.3^{18}\vdots 9$
$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$
$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9
$\Rightarrow A$ không thể là số chính phương.
13 + 23 + 33 = 1 + 8 + 27 = 36.
Mà 36 = 62 là SCP (vì là bình phương của 6) nên 13 + 23 + 33 là SCP
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100.
Mà 100 = 102 là SCP (vì là bình phương của 10) nên 13 + 23 + 33 + 43 là SCP.
Vậy mỗi tổng đã cho đều là số chính phương.
Đề: Viết dãy các số tự nhiên từ 1 đến 101 thành một số A
a) A có là hợp số hay không ?
b) A có là số chính phương hay không ?
c) A có thể có 35 ước hay không ?
Trả lời:
a. Tổng từ 1 đến 101:
101(101+1) : 2 = 5151 (Chia hết cho 3).
=> A chia hết cho 3
=> A là hợp số
b. Vì tổng từ 1 đến 100 chia hết cho nhưng ko chia hết cho 9
=> A ko phải là số chính phương.
c. A ko phải là số chính phương nên số lượng của A ko thể là số lẻ.
Để A chia hết cho 35 thì A phải chia hết cho 5 và 7
Mà A ko chia hết cho 5
=> A ko chia hết cho 35 ( vì A ko chia hết cho 5 )
a) Tính tổng các chữ số của A ta thấy:
1+2+3 chia hết cho 3
4+5+6 chia hết cho 3
...
97+98+99 chia hết cho 3
100 + 101 = 201 chia hết cho 3
A có tổng các chữ số chia hết cho 3 nên A chia hết cho 3 ⇒ A là hợp số.
b) Vẫn tính tổng của A, nhưng theo cách:
1+2+3+...+9 chia hết cho 9
11+12+13+...+19 chia hết cho 9
...
91+92+93+...+99 chia hết cho 9
10+20+30+...+90 chia hết cho 9
100+101 không chia hết cho 9
Nên A không chia hết cho 9.
Do A chia hết cho 3 nên A viết được dưới dạng: A = 3B. Và B không chia hết cho 3 vì A không chia hết cho 9.
⇒ A không phải là 1 số chính phương.
b: \(\Leftrightarrow n\left(n-1\right)-1⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
a: \(A=3\left(1+3^2+3^4\right)+...+3^{2011}\left(1+3^2+3^4\right)\)
\(=91\left(3+...+3^{2011}\right)⋮13\)
\(A=3\left(1+3^2+3^4+3^6\right)+...+3^{2009}\left(1+3^2+3^4+3^6\right)\)
\(=820\left(3+...+3^{2009}\right)⋮41\)