a) Cho \(a ∈ Z \). Chứng tỏ rằng: \(a2 ≥ 0; - a2 ≤ 0\)
b) Tìm giá trị nhỏ nhất của: A = (x - 8)2 - 2018
c) Tìm giá trị lớn nhất của: B = -(x + 5)2 + 9
* Mng bt câu nào thỳ help mk nha _ Tks !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với \(\forall a\in Z\) và a≠0, ta luôn có
\(a^2=a\cdot a\) có giá trị dương(vì âm nhân âm ra dương, dương nhân dương ra dương)(1)
Với a=0, ta luôn có:
\(a^2=a\cdot a=0\cdot0=0\)(2)
Từ (1) và (2) suy ra \(a^2\ge0\forall a\)
⇒\(-a^2\le0\forall a\)
b) Ta có: \(\left(x-8\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-8\right)^2-2018\ge-2018\forall x\)
Dấu '=' xảy ra khi
\(\left(x-8\right)^2=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-8\right)^2-2018\) là -2018 khi x=8
c) Ta có: \(\left(x+5\right)^2\ge0\forall x\)
⇒\(-\left(x+5\right)^2\le0\forall x\)
⇒\(-\left(x+5\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi
\(\left(x+5\right)^2=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Vậy: Giá trị lớn nhất của biểu thức \(B=-\left(x+5\right)^2+9\) là 9 khi x=-5