\(\dfrac{x}{a}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

a) Ta có:

\(\left|x-2017\right|\ge0\) với \(\forall x\)

\(\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu

Vậy \(x;y\in\varnothing\)

b) Ta có:

\(3.\left|x-y\right|^5\ge0\)

\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)

\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)

Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)

28 tháng 7 2017

1. a) (x-2)2 =1

=> x - 2 = \(\pm\sqrt{1}\)

=> x - 2 = 1 hoặc -1

=> x = 3 hoặc 1

b) 2x - 1= -8

=> 2x = -7

=>x = \(\dfrac{-7}{2}\)

c)thiếu đề

d) (x-1)x+2 = (x-1)x+4

(x-1)x+2 = (x-1)x+2+2

(x-1)x+2 = (x-1)x+2. (x-1)2

(x-1)x+2 - (x-1)x+2. (x-1)2 = 0

=> (x-1)x+2. [1 - (x-1)2] = 0

\(\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2a) \(\dfrac{45^{10}.5^{10}}{75^{10}}\) = \(\dfrac{\left(3.3.5\right)^{10}.5^{10}}{\left(5.5.3\right)^{10}}\) = \(\dfrac{3^{10}.3^{10}.5^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}\) = \(3^{10}\)

b) \(\dfrac{2^{15}.9^4}{6^6.8^3}\)=\(\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}\)=\(\dfrac{2^{15}.3^8}{2^6.3^6.2^9}\)=\(3^2\)

28 tháng 7 2017

c)\(\left(x-\dfrac{2}{9}^3\right)=\left(\dfrac{2}{3}\right)^6\)thank nhé

14 tháng 9 2017

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=b.d\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\)

Do đó:\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Do đó:\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{b}\left(đpcm\right)\)

14 tháng 9 2017

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Vậy \(\dfrac{a}{b}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\rightarrowđpcm\)

19 tháng 9 2016

b) x = 3

y = 4

z = 7

19 tháng 9 2016

a,

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)

Mà : x2+y2+z2=585

=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{93}=\frac{195}{31}\)

=> x=195/31.5

=> y=195/31.7

=> z=195/31.3

Xong :)

1 tháng 8 2017

a,

\(\dfrac{1916\cdot1918-2}{1915+1916\cdot1917}\\ =\dfrac{1916\cdot\left(1917+1\right)-2}{1916\cdot1917+1915}\\ =\dfrac{1916\cdot1917+1916-2}{1916\cdot1917+1915}\\ =\dfrac{1916\cdot1917+1914}{1916\cdot1917+1915}\)

\(1914< 1915\Rightarrow1916\cdot1917+1914< 1916\cdot1917+1915\Rightarrow\dfrac{1916\cdot1917+1914}{1916\cdot1917+1915}< 1\)

Vậy \(\dfrac{1916\cdot1917+1914}{1916\cdot1917+1915}< 1\)

b,

Áp dụng \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(n\in N^{\circledast}\right)\)

Ta có:

\(B=\dfrac{10^{22}+1}{10^{23}+1}< 1\\ \Rightarrow A=\dfrac{10^{22}+1}{10^{23}+1}< \dfrac{10^{22}+1+9}{10^{23}+1+9}=\dfrac{10^{22}+10}{10^{23}+10}=\dfrac{10\cdot\left(10^{21}+1\right)}{10\cdot\left(10^{22}+1\right)}=\dfrac{10^{21}+1}{10^{22}+1}=B\)

Vậy \(A< B\)

1 tháng 8 2017

@Đời về cơ bản là buồn... cười!!! bạn giúp mik vs!bucminh

29 tháng 7 2017

a, Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

Ta có: \(4\left(a-b\right)\left(b-c\right)\)

\(=4\left(3k-4k\right)\left(4k-5k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\) (1)

\(\left(a-c\right)^2=\left(3k-5k\right)^2=4k^2\) (2)

Từ (1), (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)

\(\Rightarrowđpcm\)

5 tháng 3 2017

\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0

5 tháng 3 2017

thank you!!!!!!yeu

18 tháng 7 2017

Câu 1 :

\(\text{a) }B=\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\\ B=\dfrac{\left(2^2\right)^6\cdot\left(3^2\right)^5+\left(2\cdot3\right)^9\cdot\left(2^3\cdot3\cdot5\right)}{\left(2^3\right)^4\cdot3^{12}-6^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-\left(2\cdot3\right)^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\\ B=\dfrac{2\cdot6}{3\cdot5}\\ B=\dfrac{4}{5}\\ \)

\(\text{b) }C=\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\\ C=\dfrac{5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9}{5\cdot2^9\cdot\left(2\cdot3\right)^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}}{5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{2^{29}\cdot3^{18}\left(10-9\right)}{2^{28}\cdot3^{18}\left(15-14\right)}\\ C=\dfrac{2^{29}\cdot3^{18}}{2^{28}\cdot3^{18}}\\ C=2\\ \)

\(\text{c) }D=\dfrac{49^{24}\cdot125^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot4^5}{5^{29}\cdot16^2\cdot7^{48}}\\ D=\dfrac{\left(7^2\right)^{24}\cdot\left(5^3\right)^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot\left(2^2\right)^5}{5^{29}\cdot\left(2^4\right)^2\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{5^{29}\cdot2^8\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1-28\right)}{5^{29}\cdot2^8\cdot7^{48}}\\ D=5\cdot\left(-27\right)\\ D=-135\)

18 tháng 7 2017

Câu 2 :

\(\text{a) }9^{x+1}-5\cdot3^{2x}=324\\ \Leftrightarrow9^x\cdot9-5\cdot9^x=81\cdot4\\ \Leftrightarrow9^x\left(9-5\right)=9^2\cdot4\\ \Leftrightarrow9^x\cdot4=9^2\cdot4\\ \Leftrightarrow9^x=9^2\\ \Leftrightarrow x=2\\ \text{Vậy }x=2\\ \)

Sorry . Mình chỉ biết đến đây thôi

24 tháng 6 2017

Câu 2:

a) \(\sqrt{x}=5\)

\(\Leftrightarrow x=25\)

b) \(2\sqrt{x}=\sqrt{12}\)

\(\Leftrightarrow2\sqrt{x}=2\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}=\sqrt{3}\)

\(\Leftrightarrow x=3\)

c) \(x^2=6\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\)

d) \(-3\sqrt{x}=-\sqrt{18}\)

\(\Leftrightarrow-3\sqrt{x}=3\sqrt{2}\)

\(\Leftrightarrow\sqrt{x}=\sqrt{2}\)

\(\Leftrightarrow x=2\)

e) \(x^2-1=7\)

\(\Leftrightarrow x^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\)

f) \(3\sqrt{x^2}=\sqrt{9}\)

\(\Leftrightarrow3\cdot\left|x\right|=3\)

\(\Leftrightarrow\left|x\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

24 tháng 6 2017

a, Ta có: \(\left(xyz\right)^2=\dfrac{2}{7}.\dfrac{3}{2}.\dfrac{3}{7}\)\(=\dfrac{9}{49}\)

\(\Rightarrow xyz=\sqrt{\dfrac{9}{49}}=\dfrac{3}{7}.\)

\(\Rightarrow z=\dfrac{xyz}{xy}=\dfrac{3}{7}:\dfrac{2}{7}=1,5.\)

\(\Rightarrow y=1;x=\dfrac{2}{7}\).

b, Tương tự.