K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{13}}+\frac{1}{2^{14}}\)

\(\Leftrightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{13}}+\frac{1}{2^{14}}\right)\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}+\frac{1}{2^{13}}\)

\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{12}}+\frac{1}{2^{13}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{13}}+\frac{1}{2^{14}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{14}}\)

1 tháng 8 2017

a) \(1-2+3-4+...+213-214\)

\(=\left(1-2\right)+\left(3-4\right)+...+\left(213-214\right)\)(có 107 cặp)

\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(=-107\)

b) \(\left|x-17\right|+13=25\)

\(\Rightarrow\left|x-17\right|=25-13\)

\(\Rightarrow\left|x-17\right|=12\)

\(\Rightarrow\left[{}\begin{matrix}x-17=12\\17-x=12\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=12+17\\-x=12-17\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=29\\-x=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=29\\x=5\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=29\\x=5\end{matrix}\right.\)

1 tháng 8 2017

\(1-2+3-4+5-6+...+213-214\)

\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(213-214\right)\)

\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(=\left(-1\right)\left[\left(\dfrac{214-1}{1}+1\right):2\right]\)

\(=-1.107\)

\(=-107\)

\(\left|x-17\right|+13=25\)

\(\Rightarrow\left|x-17\right|=12\)

\(\Rightarrow\left[{}\begin{matrix}x-17=12\\x-17=-12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=29\\x=5\end{matrix}\right.\)

27 tháng 12 2017

9 tháng 2 2019

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

12 tháng 11 2018

gõ đề bài trên google rùi e chép là dc ok

12 tháng 11 2018

giải hộ thôi đề bài ở trường THCS Nguyễn Đức Cảnh đó.

11 tháng 3 2023

Là \(\left(\dfrac{1}{2}\right)^2\) hay \(\dfrac{1}{2^2}\) vậy bạn

Những cái sau tương tự

11 tháng 3 2023

\(\dfrac{1}{2^2}\)

5 tháng 4 2023

a, \(\dfrac{7}{22}\) - \(\dfrac{15}{23}\) + \(\dfrac{2022}{2023}\) - \(\dfrac{8}{23}\) + \(\dfrac{15}{22}\)

= ( \(\dfrac{7}{22}\) + \(\dfrac{15}{22}\)) - ( \(\dfrac{15}{23}+\dfrac{18}{23}\)) + \(\dfrac{2022}{2023}\)

\(\dfrac{22}{22}\) - \(\dfrac{23}{23}\) + \(\dfrac{2022}{2023}\)

= 1 - 1 + \(\dfrac{2022}{2023}\)

\(\dfrac{2022}{2023}\) 

b, - \(\dfrac{2}{11}\) + 5\(\dfrac{5}{6}\) ( 14\(\dfrac{1}{5}\) - 11\(\dfrac{1}{5}\)): 5\(\dfrac{1}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) ( \(\dfrac{71}{5}\) - \(\dfrac{56}{5}\)) : \(\dfrac{11}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) . \(\dfrac{15}{5}\) : \(\dfrac{11}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{2}\) \(\times\) \(\dfrac{2}{11}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{11}\)

\(\dfrac{33}{11}\)

= 3 

c, 2000 + { 20 - [ 4.20220 - (32 + 5):2] }

= 2000 + { 20 - [ 4.1 - (9+5):2]}

= 2000 + { 20 - [ 4 - 14 : 2 ]}

= 2000 + { 20 - [ 4 -7]}

= 2000 + { 20 - (-3)}

= 2000 + 23

= 2023

24 tháng 5 2016

a, Số lượng số hạng của A là:  (40-21):1+1=20 số     (1)

\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\) 

\(=>A>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)(20 số hạng)

            \(A>\frac{1}{40}\cdot20=\frac{20}{40}=\frac{1}{2}\)

Vậy A> \(\frac{1}{2}\)

b, Từ (1) =>  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)

             =>   \(A< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 20 số hạng)

            =>      A<  \(\frac{1}{20}\cdot20=1\)

      Vậy A< 1

28 tháng 4 2016

Chọn mình nhé  banhqua

Ta có:

\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)

\(< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=1\) (20 p/số 1/20)

Hay A < 1.

Ta lại có:

\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)

\(>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{2}\) (20 p/số 1/40)

Hay A > 1

Vậy \(\frac{1}{2}< A< 1\)

28 tháng 4 2016

A=1/21+1/22+1/23+...+1/40(có 20 phân số)

A>1/40+1/40+1/40+...+1/40(có 20 phân số)

A>20/40=1/2(1)

A=1/21+1/22+1/23+...+1/40(có 20 phân số)

A<1/20+1/20+1/20+...+1/20(có 20 phân số)

A<20/20=1(2)

Từ (1) và (2)=>1/2<A<1