giải toán lập hệ phương trình
Hai vòi nước chảy vào 1 bể không có nước thì sau 2h55' đầy bể. Nếu để chảy 1 mình thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ 2 là 2h. Tính thời gian mỗi vòi chảy 1 mình đầy bể.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian để vòi 1 chảy một mình đầy bể là x(giờ), thời gian để vòi 2 chảy một mình đầy bể là y(giờ)
(Điều kiện: x>0 và y>0)
Nếu để chảy một mình thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 2 giờ nên ta có: b-a=2
=>b=a+2(1)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{a}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{b}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được:
\(1:\dfrac{4}{3}=\dfrac{3}{4}\left(bể\right)\)
Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}b=a+2\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+2\\\dfrac{1}{a}+\dfrac{1}{a+2}=\dfrac{3}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=a+2\\\dfrac{a+2+a}{a\left(a+2\right)}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+2\\\dfrac{2a+2}{a^2+2a}=\dfrac{3}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\left(a^2+2a\right)=4\left(2a+2\right)\\b=a+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a^2+6a-8a-8=0\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a^2-2a-8=0\\b=a+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a^2-6a+4a-8=0\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(3a+4\right)=0\\b=a+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a-2=0\\3a+4=0\end{matrix}\right.\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-\dfrac{4}{3}\left(loại\right)\end{matrix}\right.\\b=a+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=2\\b=2+2=4\end{matrix}\right.\left(nhận\right)\)
Vậy: Thời gian để vòi 1 chảy một mình đầy bể là 2 giờ
Thời gian để vòi 2 chảy một mình đầy bể là 4 giờ
Gọi x ( giờ ) là thời gian vòi thứ nhất chảy một mình đầy bể :
\(\left(x>\frac{35}{12}\right)\) Đổi : \(2h55'=\frac{12}{35}\left(h\right)\)
Thời gian vòi thứ hai chảy một mình đầy bể là : ( x + 2 )
Trong 1 giờ vòi thứ nhất chảy được \(\frac{1}{x}\)bể và vòi thứ hai chảy được \(\frac{1}{x+2}\)bể nên ta có phương trình :
\(\frac{1}{x}+\frac{1}{x+2}=\frac{12}{35}\)
\(\Leftrightarrow\)\(35\left(x+2+x\right)=12x\left(x+2\right)\Leftrightarrow6x^2-23x-35=0\)
Giải phương trình ta có 2 nghiệm là :
\(x1=5\)và \(x2=\frac{-7}{6}\)
Đối chiếu với điều kiện ban đầu ta được:
- Thời gian vòi thứ nhất chảy một mình đầy bể là 5giờ.
- Thời gian vòi thứ hai chảy một mình đầy bể là 7 giờ.
Gọi thời gian chảy của vòi thứ nhất để bể đầy là a giờ (a > 0)
\(\Rightarrow\)Thời gian chảy của vòi thứ 2 để bể đầy là a + 2 giờ
Đổi : 2 giờ 24 phút : = \(\frac{12}{5}\) giờ
\(\Rightarrow\)Nếu cả 2 vòi cùng chảy thì sau một giờ nước trong bể sẽ bằng : \(\frac{1}{\frac{12}{5}}=\frac{5}{12}\)(bể)
Ta có phương trình :
\(\frac{1}{a}+\frac{1}{a+2}=\frac{5}{12}\)
\(\Leftrightarrow\frac{12\left(a+2\right)+12a}{12a\left(a+2\right)}=\frac{5a\left(a+2\right)}{12a\left(a+2\right)}\)
\(\Leftrightarrow12a+24+12a=5a^2+10a\)
\(\Leftrightarrow-5a^2+14a+24=0\)
\(\Leftrightarrow-5a^2-6a+20a+24=0\)
\(\Leftrightarrow-a\left(5a+6\right)+4\left(5a+6\right)=0\)
\(\Leftrightarrow\left(5a+6\right)\left(4-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5a+6=0\\4-a=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{6}{5}\left(ktm\right)\\a=4\left(tm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy 1 mình để đầy bể là 4 giờ
thời gian vòi thứ 2 chảy 1 mình để đầy bể là 4 + 2 = 6 giờ.
đổi 3 giờ 36 phút=\(\dfrac{18}{5}\)=3,6 giờ
gọi thời gian vòi 1 và vòi 2 chảy riêng đầy bể lần lượt:x,y(x,y>3,6)
=>hệ pt: \(\left\{{}\begin{matrix}y-x=3\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3,6}\end{matrix}\right.\)
giải hệ pt trên ta tính được \(\left\{{}\begin{matrix}x=6\left(TM\right)\\y=9\left(TM\right)\end{matrix}\right.\)
vậy nếu chảy riêng đầy bể vòi 1 chảy trong 6 giờ
vòi 2 chảy riêng trong 9 giờ
Gọi thời gian chảy một mình của vòi 1 là x
=>thời gian chảy một mình của vòi 2 là x+5
Theo đề, ta có: \(\dfrac{1}{x}+\dfrac{1}{x+5}=\dfrac{1}{6}\)
=>(x+5+x)/(x^2+5x)=1/6
=>x^2+5x=6(2x+5)=12x+30
=>x^2-7x-30=0
=>(x-10)(x+3)=0
=>x=10
=>V2=15km/h
gọi x(h) là tg vòi 1 chảy 1 mình đầy bể; x>0
y(h) là tg vòi 2 chảy 1 mình đầy bể; y>0
y=x+2
trong 1h: vòi 1 chảy được: 1x1x bể
vòi 2 chảy được: 1y1y bể
2 vòi chảy được:1x+1y=1:3512=12351x+1y=1:3512=1235bể
ta dc hpt: {y=x+21x+1y=1235{y=x+21x+1y=1235
giải hpt ta được:[x=5(n)x=−76(l)
gọi x(h) là tg vòi 1 chảy 1 mình đầy bể; x>0
y(h) là tg vòi 2 chảy 1 mình đầy bể; y>0
y=x+2
trong 1h: vòi 1 chảy được: 1x1x bể
vòi 2 chảy được: 1y1y bể
2 vòi chảy được:1phần x+1phần y=1:35 phần 12=12 phần 35 bể
ta dc hpt: { y=x+2
{1phần x+1phần y=12phần 35
giải hpt ta được:[x=5(n)x=−76(l)[x=5(n)x=−76(l)
➜y=7