K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

gọi \(z,y,z\text{ là các cạnh của tam giác vuông ,ta có}\)

\(x^2+y^2=z^2\left(1\right)\)

\(xy=2\left(x+y+z\right)\left(2\right)\)

\(\text{Từ (1) ta có:}\)

\(z^2=\left(z+y\right)^2-2xy=\left(x+y\right)^2-4\left(x+y+z\right)\Rightarrow\left(x+y\right)^2-4\left(x+y\right)+4=z^2-4z+4\)

\(\Rightarrow\left(x+y-2\right)^2=\left(z+2\right)^2\)

\(\Rightarrow x+y-2=z+2\left(x+y\ge2\right)\)

Thay z=x+y−4vào (2) ta được :

\(\left(x-4\right)\left(y-4\right)=8\)

\(\Leftrightarrow x-4=1;y-4=8\)hoặc  \(x-4=2;y-4=4\)

\(\Leftrightarrow x=5;y=12\)hoặc   \(x=6;y=8\)

20 tháng 2 2018

Gọi số đo 3 cạnh của tam giác đó là a,b,c ( c là cạnh huyền)

Theo bài ra ta có \(\hept{\begin{cases}c^2=a^2+b^2\\ab=2\left(a+b+c\right)\end{cases}}\)

Ta có 

c2=a2+b2(1)

=> c2=(a+b)2-2ab= (a+b)2-4(a+b+c)

=> c2=a2+b2+2ab-4a-4b-4c

=> c2+4c= a2+b2+2ab-4a-4b

<=> c2+4c+4=a2+b2+2ab-4a-4b+4

<=> (c+2)2=(a+b-2)2

Do a,b,c là số tự nhiên nên 

c+2=a+b-2 <=> c=a+b-4

Thay c=a+b-2 vào (1)  ta được

(a+b-4)2=a2+b2

<=> a2+b2+16-8a-8b+2ab=a2+b2

<=> 2ab-8a-8b=-16

<=> ab-4a-4b=-8

<=> ab-4a-4b+16=8

<=> a(b-4)-4(b-4)=8

<=> (b-4)(a-4)=8

Đến đây lập bảng xét ước là ra

20 tháng 2 2018

tổng 2 số là 16.26 . nếu gấp số thứ nhất lên 5 lần và gấp số thứ 2 lên 2 lần thì tổng mới là 43.2 .tìm 2 số

2 tháng 4 2016

Có hai tam giác vuông có các cạnh (5;12;13) và (6;8;10) thỏa mãn yêu cầu bài toán!

k đúng cho mk nha!

18 tháng 8 2023

Gọi \(a;b;c\) là các cạnh tam vuông

Theo đề bài ta có :

 \(\left\{{}\begin{matrix}a^2+b^2=c^2\\\dfrac{1}{2}ab=\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow c^2=\left(a+b\right)^2-2ab\)

\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\) (do (2))

\(\Leftrightarrow c^2+4=\left(a+b\right)^2-4\left(a+b\right)-4c+4\)

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)+4=c^2+4c+4\)

\(\Leftrightarrow\left(a+b-2\right)^2=\left(c+2\right)^2\)

\(\Leftrightarrow a+b-2=c+2\left(đk:a+b\ge2\right)\)

\(\Leftrightarrow c=a+b-4\)

Thay vào \(\left(2\right)\) ta được

\(ab=2\left(a+b+a+b-4\right)\)

\(\Leftrightarrow ab=4a+4b-8\)

\(\Leftrightarrow ab-4a-4b+16=8\)

\(\Leftrightarrow a\left(b-4\right)-4\left(b-4\right)=8\)

\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)

\(\Leftrightarrow\left(a-4\right);\left(b-4\right)\in\left\{1;2;4;8\right\}\)

\(\Leftrightarrow\left(a;b\right)\in\left\{\left(5;12\right);\left(6;8\right);\left(8;6\right);\left(12;5\right)\right\}\)

\(\Leftrightarrow\left(a;b;c\right)\in\left\{\left(5;12;13\right);\left(6;8;10\right);\left(8;6;10\right);\left(12;5;13\right)\right\}\) thỏa đề bài

2 tháng 10 2016

Nguyễn Minh Phương: đậm chất trẻ trâu,giỏi thì làmđi

16 tháng 1 2017

Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử 1≤a≤b<c1≤a≤b<c
Ta có hệ phương trình : {a2+b2=c2(1)ab=2(a+b+c)(2){a2+b2=c2(1)ab=2(a+b+c)(2)

Từ (1)  c2=(a+b)2−2abc2=(a+b)2−2ab

⇔c2=(a+b)2−4(a+b+c)⇔c2=(a+b)2−4(a+b+c) (theo (2))
⇔(a+b)2−4(a+b)=c2+4c⇔(a+b)2−4(a+b)=c2+4c
(a+b−2)2=(c+2)2(a+b−2)2=(c+2)2
c = a + b − 4.
Thay vào (2) ta được: ab = 2(a + b + a + b − 4)
ab −4a−4b + 8 = 0

⇔⇔ b(a −4) −4(a−4) = 8

⇔⇔(a −4)(b−4) = 8

Phân tích 8 = 1.8 = 2.4 nên ta có:

{a=5b=12{a=5b=12 hoac {a=6b=8{a=6b=8

Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)