Bài 10. thay các chữ a, b bởi các chữ số thích hợp: \(\overline{120ab}\) : 376 = \(\overline{ab}\)
Bài 11. thay các chữ a, b, c bởi các chữ số thích hợp: \(\overline{206abc}\) : 501 = \(\overline{abc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.a+b+c là ước của 1000 và không quá 27
Đáp số : 1:0,125 = 1+2+5
b.a+b+c+d là ước của 10 000 và 10<a+b+c+d bé hơn hoặc bằng 36
Đáp số : 1: 0,0625 = 6+2+3+5
a.a+b+c là ước của 1000 và không quá 27
Đáp số : 1:0,125 = 1+2+5
b.a+b+c+d là ước của 10 000 và 10<a+b+c+d bé hơn hoặc bằng 36
Đáp số : 1: 0,0625 = 6+2+3+5
giải
biến đổi đẳng thức thành
\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)
\(\overline{ab}.c=1001\div11=91\)
phân tích ra thừa số nguyên tố \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là \(13.7\)hoặc \(91.1\)
th1 cho \(\overline{ab}=13,c=7\)
th2 cho \(\overline{ab}=91,c=1\)loại vì b=c
vậy ta có \(13.77.137=137137\)
Sửa một chút nhé:
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)
<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)
<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)
<=> \(\overline{ab}.c.11=1001\)
<=> \(\overline{ab}.c=91\)
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
10 . Ta có \(\overline{120ab}\) = 12000 + \(\overline{ab}\)
Theo đề suy ra: 12000 + \(\overline{ab}\) = 376.\(\overline{ab}\)
Suy ra 12000 = 376.\(\overline{ab}\) - \(\overline{ab}\)
Nên 12000 = 375.\(\overline{ab}\)
Vậy \(\overline{ab}\) = 32
11. \(\overline{206abc}=501.\overline{abc}\)
Suy ra \(206000+\overline{abc}=501.\overline{abc}\)
Nên 206000 = 500.\(\overline{abc}\)
Vậy \(\overline{abc}\) = 412