Cho tam giác ABC thỏa mãn hệ thức b+c=2a. Trong các mênh đề sau, mệnh đề nào đúng?
A. cosB+cosC= 2cosA B. sinB+sinC= 2sinA
C. sinB+sinC= 1/2sinA D. sinB+cosC=2sinA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí sin:
\(sinB=\dfrac{b}{2R};sinC=\dfrac{c}{2R};sinA=\dfrac{a}{2R}\)
Theo định lí cosin:
\(cosB=\dfrac{a^2+c^2-b^2}{2ac};cosC=\dfrac{a^2+b^2-c^2}{2ab};cosA=\dfrac{b^2+c^2-a^2}{2bc}\)
Theo giả thiết ta có:
\(\left\{{}\begin{matrix}sinB+sinC=2sinA\\cosB+cosC=2cosA\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2R}+\dfrac{c}{2R}=2.\dfrac{a}{2R}\\\dfrac{a^2+c^2-b^2}{2ac}+\dfrac{a^2+b^2-c^2}{2ab}=2.\dfrac{b^2+c^2-a^2}{2bc}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{a^2b+bc^2-b^3}{2abc}+\dfrac{a^2c+b^2c-c^3}{2abc}=\dfrac{b^2+c^2-a^2}{bc}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{\left(b+c\right)\left(a^2+bc-b^2-c^2+bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{2a\left(a^2-b^2-c^2+2bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+2bc=b^2+c^2-a^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\left(\dfrac{b+c}{2}\right)^2-b^2-c^2+bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3b^2+3c^2-6bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3\left(b-c\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\Delta ABC\) đều
Lời giải:
a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:
asinA=bsinB=csinC=b+csinB+sinC=2asinB+sinCasinA=bsinB=csinC=b+csinB+sinC=2asinB+sinC
⇒1sinA=2sinB+sinC⇒1sinA=2sinB+sinC
⇒2sinA=sinB+sinC⇒2sinA=sinB+sinC (đpcm)
b) Theo định lý sin ta có:
asinA=bsinB=csinCasinA=bsinB=csinC
⇒(asinA)2=bsinB.csinC=a2sinB.sinC⇒(asinA)2=bsinB.csinC=a2sinB.sinC
⇒sin2A=sinB.sinC⇒sin2A=sinB.sinC (đpcm)
theo định lý sin ta có a\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
suy ra \(\dfrac{a}{sinA}=\dfrac{b+c}{sinB+sinC}=\dfrac{2a}{sinB+sinC}\)
suy ra 2sinA=sinB+sinC
b + c = 2a
⇔ \(\dfrac{b+c}{2R}=\dfrac{2a}{2R}\) (1) với R là bán kính đường tròn ngoại tiếp
Theo định lí sin \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
nên (1) ⇔ sinB + sinC = 2sinA
Chọn B