K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

theo định lý sin ta có a\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)

suy ra \(\dfrac{a}{sinA}=\dfrac{b+c}{sinB+sinC}=\dfrac{2a}{sinB+sinC}\)

suy ra 2sinA=sinB+sinC

16 tháng 3 2021

Lời giải:

a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:

asinA=bsinB=csinC=b+csinB+sinC=2asinB+sinCasin⁡A=bsin⁡B=csin⁡C=b+csin⁡B+sin⁡C=2asin⁡B+sin⁡C

⇒1sinA=2sinB+sinC⇒1sin⁡A=2sin⁡B+sin⁡C

⇒2sinA=sinB+sinC⇒2sin⁡A=sin⁡B+sin⁡C (đpcm)

b) Theo định lý sin ta có:

asinA=bsinB=csinCasin⁡A=bsin⁡B=csin⁡C

⇒(asinA)2=bsinB.csinC=a2sinB.sinC⇒(asin⁡A)2=bsin⁡B.csin⁡C=a2sin⁡B.sin⁡C

⇒sin2A=sinB.sinC⇒sin2⁡A=sin⁡B.sin⁡C (đpcm)

Kẻ AH vuông góc BC

Xét ΔAHB vuông tại H có sin B=AH/AB

=>AH=c*sin B

Xét ΔAHC vuông tại H có sin C=AH/AC

=>AH=AC*sin C=b*sin C

=>c*sin B=b*sin C

=>c/sinC=b/sinB

Kẻ BK vuông góc AC

Xét ΔABK vuông tại K có

sin A=BK/AB

=>BK=c*sinA

Xét ΔBKC vuông tại K có 

sin C=BK/BC

=>BK/a=sin C

=>BK=a*sin C

=>c*sin A=a*sin C

=>c/sin C=a/sin A

=>a/sin A=b/sinB=c/sinC

30 tháng 7 2017

chết chép thiếu

30 tháng 7 2017

Nhân \(R\)Vào đi
Áp dụng : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R.\)
Done :D
 

15 tháng 8 2020

a) ta có \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\Rightarrow\frac{a}{\sin A}=\frac{b+c}{\sin B+\sin C}=\frac{2a}{\sin B+\sin C}\)

do đó \(2a\cdot\sin A=a\left(\sin B+\sin C\right)\)

\(\Rightarrow2\sin A=\sin B+\sin C\)

b) ta có \(\frac{2}{h_a}=\frac{2a}{h_a\cdot a}=\frac{2a}{2S_{ABC}}=\frac{a}{S_{ABC}}\left(1\right)\)

\(\frac{1}{h_b}+\frac{1}{h_c}=\frac{b}{h_b\cdot b}+\frac{c}{h_c\cdot c}=\frac{b}{2S_{ABC}}+\frac{c}{2S_{ABC}}=\frac{b+c}{2S_{ABC}}=\frac{2a}{2S_{ABC}}=\frac{a}{S_{ABC}}\left(2\right)\)

từ (1) và (2) \(\Rightarrow\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)