K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

Bài 3:

Xét 2 \(\Delta\) \(AMO\)\(BNO\) có:

\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)

\(OA=OB\) (vì O là trung điểm của \(AB\))

\(AM=BN\left(gt\right)\)

=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)

=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)

\(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)

=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)

=> \(M,O,N\) thẳng hàng. (1)

Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)

=> \(OM=ON\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!

16 tháng 6 2020

Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.

9 tháng 12 2018

thiếu điểm A bạn ạ

9 tháng 12 2018

Xet tam giac AOC va BOC co

OA=OB

chung OC 

AC=BC (cùng ban kinh)

tam giac AOC=AOB(c.c.c)

goc AOC=BOC

OClà tia pg của goc xOy

Hình tự vẽ nha

14 tháng 12 2023

a: Xét ΔOBM vuông tại B có BI là đường cao

nên \(OI\cdot OM=OB^2\)

=>\(OM=\dfrac{5^2}{2}=\dfrac{25}{2}\)(cm)

Ta có: ΔOBM vuông tại B

=>\(BO^2+BM^2=OM^2\)

=>\(BM^2=OM^2-OB^2=12,5^2-5^2=131,25\)

=>\(BM=\sqrt{131,25}=\dfrac{5}{2}\sqrt{21}\left(cm\right)\)

Ta có; ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của bC

=>\(BC=2\cdot BM=2\cdot\dfrac{5}{2}\sqrt{21}=5\sqrt{21}\left(cm\right)\)

b: Xét ΔBOM vuông tại B có \(cosBOM=\dfrac{BO}{OM}=\dfrac{5}{12,5}=\dfrac{2}{5}\)

nên \(\widehat{BOM}\simeq66^025'\)

Xét (O) có

\(\widehat{ABM}\) là góc tạo bởi tiếp tuyến BM và dây cung BA

Do đó: \(\widehat{ABM}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}=\dfrac{1}{2}\cdot\widehat{BOA}\simeq33^013'\)

c: Ta có: ΔOBC cân tại O

mà OI là đường cao

nên OI là phân giác của góc BOC

Xét ΔOBM và ΔOCM có

OB=OC

\(\widehat{BOM}=\widehat{COM}\)

OM chung

Do đó: ΔOBM=ΔOCM

=>\(\widehat{OBM}=\widehat{OCM}\)

mà \(\widehat{OBM}=90^0\)

nên \(\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)