Cho (O) co hai ban kinh OA va OB vuong goc. Lay C tren (O),(C khong thuoc cung AB) : sdAC/sdBD=4/5. Tinh goc cua tam giac ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
Xet tam giac AOC va BOC co
OA=OB
chung OC
AC=BC (cùng ban kinh)
tam giac AOC=AOB(c.c.c)
goc AOC=BOC
OClà tia pg của goc xOy
Hình tự vẽ nha
a: Xét ΔOBM vuông tại B có BI là đường cao
nên \(OI\cdot OM=OB^2\)
=>\(OM=\dfrac{5^2}{2}=\dfrac{25}{2}\)(cm)
Ta có: ΔOBM vuông tại B
=>\(BO^2+BM^2=OM^2\)
=>\(BM^2=OM^2-OB^2=12,5^2-5^2=131,25\)
=>\(BM=\sqrt{131,25}=\dfrac{5}{2}\sqrt{21}\left(cm\right)\)
Ta có; ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của bC
=>\(BC=2\cdot BM=2\cdot\dfrac{5}{2}\sqrt{21}=5\sqrt{21}\left(cm\right)\)
b: Xét ΔBOM vuông tại B có \(cosBOM=\dfrac{BO}{OM}=\dfrac{5}{12,5}=\dfrac{2}{5}\)
nên \(\widehat{BOM}\simeq66^025'\)
Xét (O) có
\(\widehat{ABM}\) là góc tạo bởi tiếp tuyến BM và dây cung BA
Do đó: \(\widehat{ABM}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}=\dfrac{1}{2}\cdot\widehat{BOA}\simeq33^013'\)
c: Ta có: ΔOBC cân tại O
mà OI là đường cao
nên OI là phân giác của góc BOC
Xét ΔOBM và ΔOCM có
OB=OC
\(\widehat{BOM}=\widehat{COM}\)
OM chung
Do đó: ΔOBM=ΔOCM
=>\(\widehat{OBM}=\widehat{OCM}\)
mà \(\widehat{OBM}=90^0\)
nên \(\widehat{OCM}=90^0\)
=>MC là tiếp tuyến của (O)